Safety issues caused by the metallic lithium inside a battery represent one of the main reasons for the lack of commercial availability of rechargeable lithium‐metal batteries. The advantage of anodes based on coated lithium powder (CLiP), compared to plain lithium foil, include the suppression of dendrite formation, as the local current density during stripping/plating is reduced due to the higher surface area. Another performance and safety advantage of lithium powder is the precisely controlled mass loading of the lithium anode during electrode preparation, giving the opportunity to avoid Li excess in the cell. As an additional benefit, the coating makes electrode manufacturing safer and eases handling. Here, electrodes based on coated lithium powder electrodes (CLiP) are introduced for application in lithium‐metal batteries. These electrodes are compared to lithium foil electrodes with respect to cycling stability, coulombic efficiency of lithium stripping/plating, overpotential, and morphology changes during cycling.
The element lithium has been discovered 200 years ago. Due to its unique properties it has emerged to play a vital role in industry, esp. for energy storage, and lithium‐based products and processes support sustainable technological developments. In addition to the many uses of lithium in its inorganic forms, lithium has a rich organometallic chemistry. The development of organometallic chemistry has been hindered by synthetic problems from the start. When Wilhelm Schlenk developed the basic principles to handle and synthesize air‐ and moisture‐sensitive compounds, the road was open to further developments. After more information was available about the stability and solubility of such compounds, they started to play an essential role in other fields of chemistry as alkyl or aryl transfer reagents.
The potential use of lithium bis(oxalato)borate (LiBOB) as electrolyte salt or additive for lithium-ion batteries has been investigated. The electrochemical performances of
LiNi0.8Co0.15Al0.05normalO2
(NCA) and graphite in different electrolyte formulations were studied by galvanostatic techniques and cyclic voltammetry. Differential scanning calorimetry (DSC)/thermal gravimetry (TG), coupled with mass spectrometry, was employed in studying the thermal behavior of charged electrodes in the presence of an electrolyte. The addition of 2 wt % LiBOB to the state-of-the-art
LiPF6
electrolytes suffices to form a stable solid electrolyte interface film, thus protecting the graphite from partial exfoliation. The LiBOB graphite cells exhibited a much lower irreversible capacity in the first cycle in comparison with the pure
LiPF6
electrolyte. NCA has a better cycling stability in LiBOB when compared to the
LiPF6
electrolytes. Also, the discharge capacities obtained at different C-rates between C/5 and 5C were superior to those obtained in
LiPF6
if charging at a C/5 rate. NCA/graphite complete cells in LiBOB cycled with coulombic efficiencies comparable to the state-of-the-art
LiPF6
electrolytes. The DSC/TG measurements showed that LiBOB significantly improves the thermal stability of the graphite in the PC-containing electrolytes. LiBOB shifts the oxygen release from the NCA layered structure to much higher temperatures in comparison with the
LiPF6
electrolyte.
The conversion of three equivalents of anhydrous oxalic acid with phosphorus pentachloride yields tris(oxalato)phosphorus acid 1, which crystallizes from diethyl ether solutions as protonated diethyl ether complex [(Et2O)2H](+)[P(C2O3)3)]-. The superacidic compound can be used as catalyst for Friedel-Crafts-type reactions. Upon neutralization with lithium hydride, the lithium salt Li[P(C2O3)3] 2 is obtained, which is highly soluble in aprotic solvents and which exhibits a wide voltage window. Thus, the lithium compound is a promising candidate as electrolyte for high performance non-aqueous batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.