This study was designed to investigate the effects of an equilibration period up to 96 hours and three extenders (AndroMed, OPTIXcell, and Triladyl) on the quality of cryopreserved bull semen and to evaluate, whether an extension of the equilibration time to 72 hours does affect fertility in the field. One ejaculate of 17 bulls was collected and divided into three equal aliquots and diluted, respectively, with the three extenders. Each aliquot was again divided into five parts and equilibrated for 4, 24, 48, 72, and 96 hours before freezing in an automatic freezer. Sperm motility, plasma membrane and acrosome integrity (PMAI), and DNA fragmentation index (% DFI) were measured during equilibration. In addition to the parameters measured during equilibration, the percentage of viable sperm cells with high mitochondrial membrane potential (HMMP) was measured immediately after thawing, and after 3 hours of incubation at 37°C. Sperm motility was assessed using CASA, and PMAI, HMMP, and % DFI were measured using flow cytometry. Equilibration time did affect all parameters before freezing (P < 0.01), and also the extender affected all parameters except HMMP (P < 0.05). After thawing, all parameters except HMMP immediately after thawing were influenced by the equilibration period (P < 0.001), whereas all parameters except % DFI immediately after thawing were influenced by the extender (P < 0.001). The changes of semen characteristics during 3 hours of incubation were also dependent on the equilibration time and the extender used in all parameters (P < 0.01). In the field study, semen of nine bulls was collected thrice weekly, processed using Triladyl egg yolk extender, and frozen in 0.25 mL straws with 15 × 106 spermatozoa per straw. In total, the nonreturn rates on Day 90 after insemination (NRR90) of 263,816 inseminations in two periods were evaluated. Whereas semen collected on Mondays and Wednesdays was equilibrated for 24 hours in both periods, semen collected on Fridays was equilibrated for 4 hours in period one and equilibrated for 72 hours in period 2. No differences in NRR90 could be found (P > 0.05).In conclusion, extension of the equilibration time from 4 hours to 24-72 hours can improve motility and viability of cryopreserved semen after thawing. The extent of improvement in semen quality is dependent on the extender used. Prolongation of the equilibration period from 4 hours to 72 hours had no effect on fertility in the field. were measured during equilibration. In addition to the parameters measured during 23 equilibration, the percentage of viable sperm cells with high mitochondrial membrane 24 potential (HMMP) was measured immediately after thawing, and after 3 h of 25 incubation at 37°C. Sperm motility was assessed using CASA, and PMAI, HMMP 26 2 and % DFI were measured using flow cytometry. Equilibration time did affect all 27 parameters before freezing (P < 0.01), and also extender affected all parameters 28 except HMMP (P < 0.05). After thawing, all parameters except HMMP immediately 29 aft...
Cattle are ideally suited to investigate the genetics of male reproduction, because semen quality and fertility are recorded for all ejaculates of artificial insemination bulls. We analysed 26,090 ejaculates of 794 Brown Swiss bulls to assess ejaculate volume, sperm concentration, sperm motility, sperm head and tail anomalies and insemination success. The heritability of the six semen traits was between 0 and 0.26. Genome-wide association testing on 607,511 SNPs revealed a QTL on bovine chromosome 6 that was associated with sperm motility (P = 2.5 x 10 −27), head (P = 2.0 x 10 −44) and tail anomalies (P = 7.2 x 10 −49) and insemination success (P = 9.9 x 10 −13). The QTL harbors a recessive allele that compromises semen quality and male fertility. We replicated the effect of the QTL on fertility (P = 7.1 x 10 −32) in an independent cohort of 2481 Brown Swiss bulls. The analysis of wholegenome sequencing data revealed that a synonymous variant (BTA6:58373887C>T, rs474302732) in WDR19 encoding WD repeat-containing protein 19 was in linkage disequilibrium with the fertility-associated haplotype. WD repeat-containing protein 19 is a constituent of the intraflagellar transport complex that is essential for the physiological function of motile cilia and flagella. Bioinformatic and transcription analyses revealed that the BTA6:58373887 T-allele activates a cryptic exonic splice site that eliminates three evolutionarily conserved amino acids from WDR19. Western blot analysis demonstrated that the BTA6:58373887 T-allele decreases protein expression. We make the remarkable observation that, in spite of negative effects on semen quality and bull fertility, the BTA6:58373887 T-allele has a frequency of 24% in the Brown Swiss population. Our findings are the first to uncover a variant that is associated with quantitative variation in semen quality and male fertility in cattle.
Background Cattle are ideally suited to investigate the genetics of male fertility. Semen from individual bulls is used for thousands of artificial inseminations for which the fertilization success is monitored. Results from the breeding soundness examination and repeated observations of semen quality complement the fertility evaluation for each bull. Results In a cohort of 3881 Brown Swiss bulls that had genotypes at 683,609 SNPs, we reveal four novel recessive QTL for male fertility on BTA1, 18, 25, and 26 using haplotype-based association testing. A QTL for bull fertility on BTA1 is also associated with sperm head shape anomalies. All other QTL are not associated with any of the semen quality traits investigated. We perform complementary fine-mapping approaches using publicly available transcriptomes as well as whole-genome sequencing data of 125 Brown Swiss bulls to reveal candidate causal variants. We show that missense or nonsense variants in SPATA16, VWA3A, ENSBTAG00000006717 and ENSBTAG00000019919 are in linkage disequilibrium with the QTL. Using whole-genome sequence data, we detect strong association (P = 4.83 × 10− 12) of a missense variant (p.Ile193Met) in SPATA16 with male fertility. However, non-coding variants exhibit stronger association at all QTL suggesting that variants in regulatory regions contribute to variation in bull fertility. Conclusion Our findings in a dairy cattle population provide evidence that recessive variants may contribute substantially to quantitative variation in male fertility in mammals. Detecting causal variants that underpin variation in male fertility remains difficult because the most strongly associated variants reside in poorly annotated non-coding regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.