Cite as:Reuben Binns, Max Van Kleek, Michael Veale, Ulrik Lyngs, Jun Zhao and Nigel Shadbolt (2018) 'It's Reducing a Human Being to a Percentage'; Perceptions of Justice in Algorithmic Decisions. ACM Conference on Human Factors in Computing Systems (CHI'18), April 21–26, Montreal, Canada. doi: 10.1145/3173574.3173951Data-driven decision-making consequential to individuals raises important questions of accountability and justice. Indeed, European law provides individuals limited rights to 'meaningful information about the logic' behind significant, autonomous decisions such as loan approvals, insurance quotes, and CV filtering. We undertake three experimental studies examining people's perceptions of justice in algorithmic decision-making under different scenarios and explanation styles. Dimensions of justice previously observed in response to human decision-making appear similarly engaged in response to algorithmic decisions. Qualitative analysis identified several concerns and heuristics involved in justice perceptions including arbitrariness, generalisation, and (in)dignity. Quantitative analysis indicates that explanation styles primarily matter to justice perceptions only when subjects are exposed to multiple different styles---under repeated exposure of one style, scenario effects obscure any explanation effects. Our results suggests there may be no 'best' approach to explaining algorithmic decisions, and that reflection on their automated nature both implicates and mitigates justice dimensions.
Third party tracking allows companies to identify users and track their behaviour across multiple digital services. This paper presents an empirical study of the prevalence of third-party trackers on 959,000 apps from the US and UK Google Play stores. We find that most apps contain third party tracking, and the distribution of trackers is long-tailed with several highly dominant trackers accounting for a large portion of the coverage. The extent of tracking also differs between categories of apps; in particular, news apps and apps targeted at children appear to be amongst the worst in terms of the number of third party trackers associated with them. Third party tracking is also revealed to be a highly trans-national phenomenon, with many trackers operating in jurisdictions outside the EU. Based on these findings, we draw out some significant legal compliance challenges facing the tracking industry.
Many people struggle to control their use of digital devices. However, our understanding of the design mechanisms that support user self-control remains limited. In this paper, we make two contributions to HCI research in this space: first, we analyse 367 apps and browser extensions from the Google Play, Chrome Web, and Apple App stores to identify common core design features and intervention strategies afforded by current tools for digital self-control. Second, we adapt and apply an integrative dual systems model of self-regulation as a framework for organising and evaluating the design features found. Our analysis aims to help the design of better tools in two ways: (i) by identifying how, through a well-established model of self-regulation, current tools overlap and differ in how they support self-control; and (ii) by using the model to reveal underexplored cognitive mechanisms that could aid the design of new tools.
Data-driven decision-making consequential to individuals raises important questions of accountability and justice. Indeed, European law provides individuals limited rights to 'meaningful information about the logic' behind significant, autonomous decisions such as loan approvals, insurance quotes, and CV filtering. We undertake three experimental studies examining people's perceptions of justice in algorithmic decision-making under different scenarios and explanation styles. Dimensions of justice previously observed in response to human decision-making appear similarly engaged in response to algorithmic decisions. Qualitative analysis identified several concerns and heuristics involved in justice perceptions including arbitrariness, generalisation, and (in)dignity. Quantitative analysis indicates that explanation styles primarily matter to justice perceptions only when subjects are exposed to multiple different styles-under repeated exposure of one style, scenario effects obscure any explanation effects. Our results suggests there may be no 'best' approach to explaining algorithmic decisions, and that reflection on their automated nature both implicates and mitigates justice dimensions.
Third party tracking allows companies to identify users and track their behaviour across multiple digital services. This paper presents an empirical study of the prevalence of third-party trackers on 959,000 apps from the US and UK Google Play stores. We find that most apps contain third party tracking, and the distribution of trackers is long-tailed with several highly dominant trackers accounting for a large portion of the coverage. The extent of tracking also differs between categories of apps; in particular, news apps and apps targeted at children appear to be amongst the worst in terms of the number of third party trackers associated with them. Third party tracking is also revealed to be a highly trans-national phenomenon, with many trackers operating in jurisdictions outside the EU. Based on these findings, we draw out some significant legal compliance challenges facing the tracking industry. CCS CONCEPTS• Security and privacy → Economics of security and privacy; Software reverse engineering; • Applied computing → Law; • Networks → Mobile and wireless security;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.