Forced training has been shown to have beneficial vascular effects in various animal exercise models. In the present study, we explored possible physiological and molecular effects of voluntary physical exercise on various vascular beds. SHR (spontaneously hypertensive rats) performed voluntary exercise for 5 weeks in a computerized wheel cage facility. Ex vivo myograph studies revealed an increased sensitivity of the ACh (acetylcholine)-mediated vasodilation in resistance arteries of the exercised animals (ED50=15.0+/-3.5 nmol/l) compared with the controls (ED50=37.0+/-8.8 nmol/l; P=0.05). The exercise/control difference was abolished after scavenging reactive oxygen radicals. In conduit arteries, ACh induced a similar vasodilatory response in both groups. The in vivo aortic wall stiffness, assessed by means of Doppler tissue echography, was significantly lower in the exercising animals than in controls. This was demonstrated by significantly increased peak systolic aortic wall velocity (P=0.03) and the velocity time integral (P=0.01) in exercising animals compared with controls. The relative gene expression of eNOS (endothelial nitric oxide synthase) was similar in both groups of animals, whereas Cu/ZnSOD (copper/zinc superoxide dismutase) gene expression was significantly increased (+111%; P=0.0007) in the exercising animal compared with controls. In conclusion, voluntary physical exercise differentially improves vascular function in various vascular beds. Increased vascular compliance and antioxidative capacity may contribute to the atheroprotective effects associated with physical exercise in conduit vessels.
BackgroundEvidence from animal studies indicates the importance of an interaction between the sympathetic nervous system and the endothelium for cardiovascular regulation. However the interaction between these two systems remains largely unexplored in humans. The aim of this study was to investigate whether directly recorded sympathetic vasoconstrictor outflow is related to a surrogate marker of endothelial function in healthy individuals.Methods and ResultsIn 10 healthy normotensive subjects (3 f/7 m), (age 37±11 yrs), (BMI 24±3 kg/m2) direct recordings of sympathetic action potentials to the muscle vascular bed (MSNA) were performed and endothelial function estimated with the Reactive Hyperaemia- Peripheral Arterial Tonometry (RH-PAT) technique. Blood samples were taken and time spent on leisure-time physical activities was estimated. In all subjects the rate between resting flow and the maximum flow, the Reactive Hyperemic index (RH-PAT index), was within the normal range (1,9–3,3) and MSNA was as expected for age and gender (13–44 burst/minute). RH-PAT index was inversely related to MSNA (r = −0.8, p = 0.005). RH-PAT index and MSNA were reciprocally related to time (h/week) spent on physical activity (p = 0.005 and p = 0.006 respectively) and platelet concentration (PLT) (p = 0.02 and p = 0.004 respectively).ConclusionsOur results show that sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy normotensive individuals, indicating that sympathetic outflow may be modulated by changes in endothelial function. In this study time spent on physical activity is identified as a predictor of sympathetic nerve activity and endothelial function in a group of healthy individuals. The results are of importance in understanding mechanisms underlying sympathetic activation in conditions associated with endothelial dysfunction and emphasise the importance of a daily exercise routine for maintenance of cardiovascular health.
The ontogeny of gut innervation in the anuran amphibian Xenopus laevis was studied using immunohistochemistry on sections of whole larvae from NF stages 38-52. Immunoreactivity to acetylated tubulin confirmed the presence of nerve fibres as early as stages 38-39. Actin immunoreactivity was found at stage 41, indicating the presence of smooth muscle cells. Trk-like neurotrophin receptors were occasionally found in nerve fibres as soon as stages 38-39. Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) immunoreactivities coexisted in nerves innervating the gut wall from stages 40-41, and nitric oxide synthase (NOS) from stage 42. Substance P/neurokinin A (SP/NKA) occurred at stage 42. In all these cases, the first fibres were observed in the oesophagus. Calcitonin gene-related peptide (CGRP) was first observed in nerves at stage 48. In general, VIP/PACAP and NOS innervation was denser than the tachykinin innervation. In conclusion, the development of nerve fibres in the Xenopus gut is probably dependent on neurotrophins that may act via Trk-like receptors and occur before the gut wall is fully organised morphologically. Feeding in Xenopus larvae starts at NF stage 45. The study demonstrates that several of the transmitters investigated are expressed in the gut innervation (and in endocrine cells) prior to this stage.
Short-term exercise training has been shown to improve cardiovascular function, whereas long-term effects of a physically active lifestyle, on coronary artery function in particular, are still not well studied. We explored possible relationships between physical exercise capacity and coronary and peripheral vascular function in healthy young adults. Twenty-nine healthy young male and female volunteers participated in the study. They underwent 1) basic clinical and echocardiographic characterization, 2) coronary flow velocity reserve (CFVR) measurement of the left anterior descending coronary artery (LAD), 3) common carotid artery (CCA) intima-media thickness (IMT) measurement, 4) assessment of CCA stiffness index (SI), 5) forearm flow-mediated vasodilation (FMD), and 6) submaximal exercise test. The calculated weight-adjusted maximal oxygen uptake capacity (Vo(2 max)(c)) was positively correlated to LAD CFVR and inversely correlated to IMT and SI. Also, subjects with high compared with moderate exercise capacity had higher FMD. In addition, subjects with LAD CFVR in the upper median had greater ratios between endothelium-dependent and -independent vasodilation in the forearm and lower SI in CCA. High exercise capacity due to a physically active lifestyle is associated with high coronary and peripheral artery function, indicating an early protective role of physical exercise for cardiovascular health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.