The levels and relative proportions of 11 organophosphorus flame retardants and plasticizers (OPs), some of which are reportedly toxic to aquatic organisms, were investigated in human breast milk and samples of fish and mussels from Swedish lakes and coastal areas in order to assess spatial differences in environmental exposure and spatial and temporal differences in human exposure. Some of the biota samples were collected at locations with known potential sources of OPs, but most were collected in background locations. Tris-2-chloroisopropyl phosphate (TCPP) and triphenyl phosphate (TPP) dominated in the biota with levels ranging from 170 to 770 ng g(-1) for TCPP in perch and between 21 and 180 ng g(-1) for TPP. In milk samples, TCPP (median 45 ng g(-1)) and tributyl phosphate (median 12 ng g(-1)) were the most frequently occurring OPs. Among samples of fish from background locations, the concentrations and profiles of most OPs were quite similar, indicating that their sources were diffuse. However, in fish from sample locations near known sources, there were marked differences in OP concentrations and profiles. Fish from a stream receiving surface water from Arlanda airport displayed high levels of OPs (10 200 ng g(-1)) that are commonly used in aircraft hydraulic fluids. Fish collected at points 1 or 2 km downstream of sewage treatment plants showed significantly higher levels of tris(2-butoxyethyl) phosphate (TBEP), one of the most typically abundant OP in effluents from such plants. In the milk samples obtained from women in different towns no distinct differences were detected in OP concentrations or profiles. However, the levels of TBEP tended to be higher in milk collected 10 years ago than in milk collected more recently. However, human exposure to OPs through eating fish or to breastfeeding babies seems to be of minor importance in relation to other potential sources, such as indoor dust inhalation and ingestion.
The behavior and fate of three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one sulfonamide (sulfamethoxazole), and trimethoprim were investigated at a sewage treatment plant in Umeå, Sweden, in 2004. This plant uses conventional mechanical, chemical, and activated sludge methods to treat the sewage water and digest the sludge; the dewatered digested sludge is pelleted (dry weight > 90% of total weight). Raw sewage water and particles as well as effluents and sludge from specific treatment areas within the plant were sampled. In addition to quantifying the antibiotics within the plant, we characterized the sample matrixes to facilitate evaluation of the results. Of the five substances examined, only norfloxacin, ciprofloxacin, and trimethoprim were present in concentrations higher than their limits of quantification. Norfloxacin and ciprofloxacin sorbed to sludge in a manner that was independent of changes in pH during sewage treatment, and more than 70% of the total amount of these compounds passing through the plant was ultimately found in the digested sludge. The results suggest that fluoroquinolones undergo thermal degradation during pelleting, but more studies are needed to confirm this. Trimethoprim was found in the final effluent at approximately the same concentration and mass flow as in the raw sewage, and could not be quantified in any solid sample. Predicted environmental concentrations, based on consumption data for Umeå municipality, correlated well with the results obtained, especially when the predicted concentrations were corrected to account for the amount of each active substance excreted in urine. The results obtained were compared to those of previous studies of these three substances' behavior and fate and were found to be similar, although some of the other plants studied employed the various treatment steps in different orders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.