Multifaceted and idiosyncratic aberrancies in social cognition characterize autism spectrum disorders (ASDs). To advance understanding of underlying neural mechanisms, we measured brain hemodynamic activity with functional magnetic resonance imaging (fMRI) in individuals with ASD and matched-pair neurotypical (NT) controls while they were viewing a feature film portraying social interactions. Pearson's correlation coefficient was used as a measure of voxelwise similarity of brain activity (InterSubject Correlations—ISCs). Individuals with ASD showed lower ISC than NT controls in brain regions implicated in processing social information including the insula, posterior and anterior cingulate cortex, caudate nucleus, precuneus, lateral occipital cortex, and supramarginal gyrus. Curiously, also within NT group, autism-quotient scores predicted ISC in overlapping areas, including, e.g., supramarginal gyrus and precuneus. In ASD participants, functional connectivity was decreased between the frontal pole and the superior frontal gyrus, angular gyrus, superior parietal lobule, precentral gyrus, precuneus, and anterior/posterior cingulate gyrus. Taken together these results suggest that ISC and functional connectivity measure distinct features of atypical brain function in high-functioning autistic individuals during free viewing of acted social interactions. Our ISC results suggest that the minds of ASD individuals do not ‘tick together’ with others while perceiving identical dynamic social interactions.
Previous functional connectivity studies have found both hypo- and hyper-connectivity in brains of individuals having autism spectrum disorder (ASD). Here we studied abnormalities in functional brain subnetworks in high-functioning individuals with ASD during free viewing of a movie containing social cues and interactions. Twenty-six subjects (13 with ASD) watched a 68-min movie during functional magnetic resonance imaging. For each subject, we computed Pearson's correlation between haemodynamic time-courses of each pair of 6-mm isotropic voxels. From the whole-brain functional networks, we derived individual and group-level subnetworks using graph theory. Scaled inclusivity was then calculated between all subject pairs to estimate intersubject similarity of connectivity structure of each subnetwork. Additional 54 individuals (27 with ASD) from the ABIDE resting-state database were included to test the reproducibility of the results. Between-group differences were observed in the composition of default-mode and ventro-temporal-limbic (VTL) subnetworks. The VTL subnetwork included amygdala, striatum, thalamus, parahippocampal, fusiform, and inferior temporal gyri. Further, VTL subnetwork similarity between subject pairs correlated significantly with similarity of symptom gravity measured with autism quotient. This correlation was observed also within the controls, and in the reproducibility dataset with ADI-R and ADOS scores. Our results highlight how the reorganization of functional subnetworks in individuals with ASD clarifies the mixture of hypo- and hyper-connectivity findings. Importantly, only the functional organization of the VTL subnetwork emerges as a marker of inter-individual similarities that co-vary with behavioral measures across all participants. These findings suggest a pivotal role of ventro-temporal and limbic systems in autism.
BackgroundThe aim of this study was to investigate potential differences in neural structure in individuals with Asperger syndrome (AS), high-functioning individuals with autism spectrum disorder (ASD). The main symptoms of AS are severe impairments in social interactions and restricted or repetitive patterns of behaviors, interests or activities.MethodsDiffusion weighted magnetic resonance imaging data were acquired for 14 adult males with AS and 19 age, sex and IQ-matched controls. Voxelwise group differences in fractional anisotropy (FA) were studied with tract-based spatial statistics (TBSS). Based on the results of TBSS, a tract-level comparison was performed with constrained spherical deconvolution (CSD)-based tractography, which is able to detect complex (for example, crossing) fiber configurations. In addition, to investigate the relationship between the microstructural changes and the severity of symptoms, we looked for correlations between FA and the Autism Spectrum Quotient (AQ), Empathy Quotient and Systemizing Quotient.ResultsTBSS revealed widely distributed local increases in FA bilaterally in individuals with AS, most prominent in the temporal part of the superior longitudinal fasciculus, corticospinal tract, splenium of corpus callosum, anterior thalamic radiation, inferior fronto-occipital fasciculus (IFO), posterior thalamic radiation, uncinate fasciculus and inferior longitudinal fasciculus (ILF). CSD-based tractography also showed increases in the FA in multiple tracts. However, only the difference in the left ILF was significant after a Bonferroni correction. These results were not explained by the complexity of microstructural organization, measured using the planar diffusion coefficient. In addition, we found a correlation between AQ and FA in the right IFO in the whole group.ConclusionsOur results suggest that there are local and tract-level abnormalities in white matter (WM) microstructure in our homogenous and carefully characterized group of adults with AS, most prominent in the left ILF.
BackgroundRecent brain imaging findings suggest that there are widely distributed abnormalities affecting the brain connectivity in individuals with autism spectrum disorder (ASD). Using graph theoretical analysis, it is possible to investigate both global and local properties of brain’s wiring diagram, i.e., the connectome.MethodsWe acquired diffusion-weighted magnetic resonance imaging data from 14 adult males with high-functioning ASD and 19 age-, gender-, and IQ-matched controls. As with diffusion tensor imaging-based tractography, it is not possible to detect complex (e.g., crossing) fiber configurations, present in 60–90 % of white matter voxels; we performed constrained spherical deconvolution-based whole brain tractography. Unweighted and weighted structural brain networks were then reconstructed from these tractography data and analyzed with graph theoretical measures.ResultsIn subjects with ASD, global efficiency was significantly decreased both in the unweighted and the weighted networks, normalized characteristic path length was significantly increased in the unweighted networks, and strength was significantly decreased in the weighted networks. In the local analyses, betweenness centrality of the right caudate was significantly increased in the weighted networks, and the strength of the right superior temporal pole was significantly decreased in the unweighted networks in subjects with ASD.ConclusionsOur findings provide new insights into understanding ASD by showing that the integration of structural brain networks is decreased and that there are abnormalities in the connectivity of the right caudate and right superior temporal pole in subjects with ASD.Electronic supplementary materialThe online version of this article (doi:10.1186/s13229-015-0058-4) contains supplementary material, which is available to authorized users.
To investigate whether there are global white matter (WM) differences between autistic and healthy adults, we performed diffusion tensor imaging (DTI) in 14 male adults with Asperger syndrome (AS) and 19 gender-, age-, and intelligence quotient-matched controls. We focused on individuals with high-functioning autism spectrum disorder (ASD), AS, to decrease heterogeneity caused by large variation in the cognitive profile. Previous DTI studies of ASD have mainly focused on finding local changes in fractional anisotropy (FA) and mean diffusivity (MD), two indexes used to characterize microstructural properties of WM. Although the local or voxel-based approaches may be able to provide detailed information in terms of location of the observed differences, such results are known to be highly sensitive to partial volume effects, registration errors, or placement of the regions of interest. Therefore, we performed global histogram analyses of (a) whole-brain tractography results and (b) skeletonized WM masks. In addition to the FA and MD, the planar diffusion coefficient (CP) was computed as it can provide more specific information of the complexity of the neural structure. Our main finding indicated that adults with AS had higher mean FA values than controls. A less complex neural structure in adults with AS could have explained the results, but no significant difference in CP was found. Our results suggest that there are global abnormalities in the WM tissue of adults with AS. Autism Res 2013, 6: 642-650.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.