Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.
A novel treatment was tested with groundwater to investigate its arsenic removal under natural conditions. The system utilised in-line electrochlorination to oxidise water constituents without the need for external chemical supply. The oxidised arsenic and iron co-precipitated and were filtered via Greensand Plus™. The filter was catalytically active and provided an emergency oxidant. The system had only a few maintenance requirements due to online water quality monitoring. The contaminant removal during the field test in Costa Rica was impaired by strong fluctuations in water quality including low iron concentrations. However, the system removed on average 68% of the arsenic. Mean values of arsenic were 40 ± 23 μg/L in groundwater and 13 ± 6 μg/L in treated water. Iron was removed from an average of 2.8 ± 2.4 mg/L to 0.2 ± 0.2 mg/L (93% removal). Free chlorine produced and available in the treated water tank had a mean concentration of 1.25 mg/L and 0.64 mg/L, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.