Radiolabeled amino acids, their derivatives and peptides have a broad scope of application and can be used as receptor ligands, as well as enzyme substrates for many different diseases as radiopharmaceutical tracers. Over the past few decades, the application of molecular imaging techniques such as positron emission tomography (PET) has gained considerable importance and significance in diagnosis in today's advanced health care. Next to that, the availability of cyclotrons and state-of-the-art radiochemistry facilities has progressed the production of imaging agents enabling the preparation of many versatile PET radiotracers. Due to many favorable characteristics of radiolabeled amino acids and peptides, they can be used for tumor staging and monitoring the progress of therapy success, while aromatic amino acids can be employed as PET tracer to study neurological disorders. This review provides a comprehensive overview of radiosynthetic and enzymatic approaches towards carbon-11 amino acids, their analogues and peptides, with focus on stereoselective reactions, and reflects upon their clinical application.
A rapid method for the synthesis of carbon-11 radiolabeled phenylalanine was developed using a chiral phase-transfer catalyst and a sub-nanomolar quantity of [C]benzyl iodide as a radio-precursor. Based on a reported synthesis of [C]benzyl iodide, a Schiff base precursor was evaluated for stereoselective [C]benzylation. Extensive and interactive screening of the precursor, catalyst, base, stirring and temperature was required to achieve high stereoinduction. The result is an efficient 5-step radiolabeling method to reliably synthesize l- or d-[C]phenylalanine with an excellent enantiomeric excess of >90% and almost quantitative radiochemical conversion of >95% (n > 5). Additionally, a phase-transfer catalyzed alkylation was utilized on the preparative scale using automated platform. The application resulted in high specific activity ranging from 85-135 GBq μmol of the enantiomerically pure [C]phenylalanine, showing that the process is robust and amenable to broad use in PET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.