Nowadays, Renewable Energy Sources (RES) are attracting more and more interest. Thus, many countries aim to increase the share of green energy and have to face with several challenges (e.g., balancing, storage, pricing). In this paper, we address the balancing challenge and present the MIRABEL project which aims to prototype an Energy Data Management System (EDMS) which takes benefit of flexibilities to efficiently balance energy demand and supply. The EDMS consists of millions of heterogeneous nodes that each incorporates advanced components (e.g., aggregation, forecasting, scheduling, negotiation). We describe each of these components and their interaction. Preliminary experimental results confirm the feasibility of our EDMS.
We demonstrate TimeTravel, an efficient DBMS system for seamless integrated querying of past and (forecasted) future values of time series, allowing the user to view past and future values as one joint time series. This functionality is important for advanced application domain like energy. The main idea is to compactly represent time series as models. By using models, the TimeTravel system answers queries approximately on past and future data with error guarantees (absolute error and confidence) one order of magnitude faster than when accessing the time series directly. In addition, it efficiently supports exact historical queries by only accessing relevant portions of the time series. This is unlike existing approaches, which access the entire time series to exactly answer the query. To realize this system, we propose a novel hierarchical model index structure. As real-world time series usually exhibits seasonal behavior, models in this index incorporate seasonality. To construct a hierarchical model index, the user specifies seasonality period, error guarantees levels, and a statistical forecast method. As time proceeds, the system incrementally updates the index and utilizes it to answer approximate and exact queries. TimeTravel is implemented into PostgreSQL, thus achieving complete user transparency at the query level. In the demo, we show the easy building of a hierarchical model index for a real-world time series and the effect of varying the error guarantees on the speed up of approximate and exact queries.
The integration of renewable energy sources (RES) into local energy distribution networks becomes increasingly important. Renewable energy highly depends on weather conditions, making it difficult to maintain stability in such networks. To still enable efficient planning and balancing, forecasts of energy supply are essential. However, typical distribution networks contain a variety of heterogeneous RES installations (e.g. wind, solar, water), each providing different characteristics and weather dependencies. Additionally, advanced meters, which allow the communication of finalgranular production curves to the network operator, are not available at all RES sites. Despite these heterogeneities and missing measurements, reliable forecasts over the whole local distribution network have to be provided. This poses high challenges on choosing the right input parameters, statistical models and forecasting granularity (e.g. single RES installations vs. aggregated data). In this paper, we will discuss such problems in energy supply forecasting using a real-world scenario. Subsequently, we introduce our idea of a generalized optimization approach that determines the best forecasting strategy for a given scenario and sketch research challenges we are planning to investigate in future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.