The notion that the obesogenic potential of high fat diets in rodents is attenuated when the protein:carbohydrate ratio is increased is largely based on studies using casein or whey as the protein source. We fed C57BL/6J mice high fat-high protein diets using casein, soy, cod, beef, chicken or pork as protein sources. Casein stood out as the most efficient in preventing weight gain and accretion of adipose mass. By contrast, mice fed diets based on pork or chicken, and to a lesser extent mice fed cod or beef protein, had increased adipose tissue mass gain relative to casein fed mice. Decreasing the protein:carbohydrate ratio in diets with casein or pork as protein sources led to accentuated fat mass accumulation. Pork fed mice were more obese than casein fed mice, and relative to casein, the pork-based feed induced substantial accumulation of fat in classic interscapular brown adipose tissue accompanied by decreased UCP1 expression. Furthermore, intake of a low fat diet with casein, but not pork, as a protein source reversed diet-induced obesity. Compared to pork, casein seems unique in maintaining the classical brown morphology in interscapular brown adipose tissue with high UCP1 expression. This was accompanied by increased expression of genes involved in a futile cycling of fatty acids. Our results demonstrate that intake of high protein diets based on other protein sources may not have similar effects, and hence, the obesity protective effect of high protein diets is clearly modulated by protein source.
Our results indicate integrated involvement of (i) TAG/FA cycling and DNL in WAT, and (ii) hepatic very-low-density lipoprotein-TAG synthesis in the control of blood lipid levels and provision of FA fuels for thermogenesis in cold. They suggest that lipogenesis in WAT contributes to a lean phenotype.
Low-fat diets and energy restriction are recommended to prevent obesity and to induce weight loss, but high-protein diets are popular alternatives. However, the importance of the protein source in obesity prevention and weight loss is unclear. The aim of this study was to investigate the ability of different animal protein sources to prevent or reverse obesity by using lean or obese C57BL/6J mice fed high-fat/high-protein or low-fat diets with casein, cod or pork as protein sources. Only the high-fat/high-protein casein-based diet completely prevented obesity development when fed to lean mice. In obese mice, ad libitum intake of a casein-based high-fat/high-protein diet modestly reduced body mass, whereas a pork-based high-fat/high-protein diet aggravated the obese state and reduced lean body mass. Caloric restriction of obese mice fed high-fat/high-protein diets reduced body weight and fat mass and improved glucose tolerance and insulin sensitivity, irrespective of the protein source. Finally, in obese mice, ad libitum intake of a low-fat diet stabilized body weight, reduced fat mass and increased lean body mass, with the highest loss of fat mass found in mice fed the casein-based diet. Combined with caloric restriction, the casein-based low-fat diet resulted in the highest loss of fat mass. Overall, the dietary protein source has greater impact in obesity prevention than obesity reversal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.