Microalgae contain a multitude of nutrients and can be grown sustainably. Fucoxanthin, a carotenoid from Phaeodactylum tricornutum, could have beneficial health effects. Therefore, we investigated the anti-inflammatory, antioxidative and antiproliferative effects of fucoxanthin derived from this diatom in vitro. The effects of purified fucoxanthin on metabolic activity were assessed in blood mononuclear cells and different cell lines. In cell lines, caspase 3/7 activity was also analyzed. Nitrogen monoxide release and mRNA-expression of proinflammatory cytokines were measured. For antioxidant assays, cell free assays were conducted. Additionally, the antioxidant effect in neutrophils was quantified and glutathione was determined in HeLa cells. The results show that neither did fucoxanthin have anti-inflammatory properties nor did it exert cytotoxic effects on mononuclear cells. However, the metabolic activity of cell lines was decreased up to 58% and fucoxanthin increased the caspase 3/7 activity up to 4.6-fold. Additionally, dose-dependent antioxidant effects were detected, resulting in a 63% decrease in chemiluminescence in blood neutrophils and a 3.3-fold increase in the ratio of reduced to oxidized glutathione. Our studies show that fucoxanthin possesses antiproliferative and antioxidant activities in vitro. Hence, this carotenoid or the whole microalgae P. tricornutum could be considered as a food or nutraceutical in human nutrition, showcasing beneficial health effects.
Microalgae are rich in macronutrients and therefore, they have been proposed as a potential future food source preserving natural resources. Here, we studied safety and bioavailability of algae nutrients in mice. Three microalgae species, Chlorella vulgaris, Nannochloropsis oceanica and Phaeodactylum tricornutum, were studied after ball mill disruption at different doses (5%, 15% and 25% dry weight) for 14 days. In response to all three algae diets, we observed a weight gain similar or superior to that in response to the control diet. No substantial differences in organ weights nor gut length occurred. Protein bioavailability from the algae diets did not differ from the control diet ranging from 58% to 77% apparent biological value. Fat absorption was lower for microalgae compared to soy oil in control diets, albeit still substantial. High liver eicosapentaenoic acid levels were measured following feeding with N. oceanica, the algae richest in omega-3 fatty acids. Neither histological nor serum analyses revealed any heart, kidney or liver toxicity induced by any of the algae diets. Algae-rich diets were thus well accepted, well tolerated and suitable for the maintenance of body weight and normal organ function. No toxicological effects were observed.
GF housing results in an impaired weight gain and a lack of steatosis following a WSD. Also the fructose-induced steatosis, which is unrelated to body weight changes, is absent in GF mice. Thus, diet-induced experimental liver steatosis depends in multiple ways on intestinal bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.