IntroductionThe appropriate strategy for trauma-induced coagulopathy management is under debate. We report the treatment of major trauma using mainly coagulation factor concentrates.MethodsThis retrospective analysis included trauma patients who received ≥ 5 units of red blood cell concentrate within 24 hours. Coagulation management was guided by thromboelastometry (ROTEM®). Fibrinogen concentrate was given as first-line haemostatic therapy when maximum clot firmness (MCF) measured by FibTEM (fibrin-based test) was <10 mm. Prothrombin complex concentrate (PCC) was given in case of recent coumarin intake or clotting time measured by extrinsic activation test (EXTEM) >1.5 times normal. Lack of improvement in EXTEM MCF after fibrinogen concentrate administration was an indication for platelet concentrate. The observed mortality was compared with the mortality predicted by the trauma injury severity score (TRISS) and by the revised injury severity classification (RISC) score.ResultsOf 131 patients included, 128 received fibrinogen concentrate as first-line therapy, 98 additionally received PCC, while 3 patients with recent coumarin intake received only PCC. Twelve patients received FFP and 29 received platelet concentrate. The observed mortality was 24.4%, lower than the TRISS mortality of 33.7% (P = 0.032) and the RISC mortality of 28.7% (P > 0.05). After excluding 17 patients with traumatic brain injury, the difference in mortality was 14% observed versus 27.8% predicted by TRISS (P = 0.0018) and 24.3% predicted by RISC (P = 0.014).ConclusionsROTEM®-guided haemostatic therapy, with fibrinogen concentrate as first-line haemostatic therapy and additional PCC, was goal-directed and fast. A favourable survival rate was observed. Prospective, randomized trials to investigate this therapeutic alternative further appear warranted.
IntroductionThromboelastometry (TEM)-guided haemostatic therapy with fibrinogen concentrate and prothrombin complex concentrate (PCC) in trauma patients may reduce the need for transfusion of red blood cells (RBC) or platelet concentrate, compared with fresh frozen plasma (FFP)-based haemostatic therapy.MethodsThis retrospective analysis compared patients from the Salzburg Trauma Centre (Salzburg, Austria) treated with fibrinogen concentrate and/or PCC, but no FFP (fibrinogen-PCC group, n = 80), and patients from the TraumaRegister DGU receiving ≥ 2 units of FFP, but no fibrinogen concentrate/PCC (FFP group, n = 601). Inclusion criteria were: age 18-70 years, base deficit at admission ≥2 mmol/L, injury severity score (ISS) ≥16, abbreviated injury scale for thorax and/or abdomen and/or extremity ≥3, and for head/neck < 5.ResultsFor haemostatic therapy in the emergency room and during surgery, the FFP group (ISS 35.5 ± 10.5) received a median of 6 units of FFP (range: 2, 51), while the fibrinogen-PCC group (ISS 35.2 ± 12.5) received medians of 6 g of fibrinogen concentrate (range: 0, 15) and 1200 U of PCC (range: 0, 6600). RBC transfusion was avoided in 29% of patients in the fibrinogen-PCC group compared with only 3% in the FFP group (P< 0.001). Transfusion of platelet concentrate was avoided in 91% of patients in the fibrinogen-PCC group, compared with 56% in the FFP group (P< 0.001). Mortality was comparable between groups: 7.5% in the fibrinogen-PCC group and 10.0% in the FFP group (P = 0.69).ConclusionsTEM-guided haemostatic therapy with fibrinogen concentrate and PCC reduced the exposure of trauma patients to allogeneic blood products.
IntroductionPrediction of massive transfusion (MT) among trauma patients is difficult in the early phase of trauma management. Whole-blood thromboelastometry (ROTEM®) tests provide immediate information about the coagulation status of acute bleeding trauma patients. We investigated their value for early prediction of MT.MethodsThis retrospective study included patients admitted to the AUVA Trauma Centre, Salzburg, Austria, with an injury severity score ≥16, from whom blood samples were taken immediately upon admission to the emergency room (ER). ROTEM® analyses (extrinsically-activated test with tissue factor (EXTEM), intrinsically-activated test using ellagic acid (INTEM) and fibrin-based extrinsically activated test with tissue factor and the platelet inhibitor cytochalasin D (FIBTEM) tests) were performed. We divided patients into two groups: massive transfusion (MT, those who received ≥10 units red blood cell concentrate within 24 hours of admission) and non-MT (those who received 0 to 9 units).ResultsOf 323 patients included in this study (78.9% male; median age 44 years), 78 were included in the MT group and 245 in the non-MT group. The median injury severity score upon admission to the ER was significantly higher in the MT group than in the non-MT group (42 vs 27, P < 0.0001). EXTEM and INTEM clotting time and clot formation time were significantly prolonged and maximum clot firmness (MCF) was significantly lower in the MT group versus the non-MT group (P < 0.0001 for all comparisons). Of patients admitted with FIBTEM MCF 0 to 3 mm, 85% received MT. The best predictive values for MT were provided by hemoglobin and Quick value (area under receiver operating curve: 0.87 for both parameters). Similarly high predictive values were observed for FIBTEM MCF (0.84) and FIBTEM A10 (clot amplitude at 10 minutes; 0.83).ConclusionsFIBTEM A10 and FIBTEM MCF provided similar predictive values for massive transfusion in trauma patients to the most predictive laboratory parameters. Prospective studies are needed to confirm these findings.
IntroductionThe TraumaRegister DGU™ (TR-DGU) has used the Revised Injury Severity Classification (RISC) score for outcome adjustment since 2003. In recent years, however, the observed mortality rate has fallen to about 2% below the prognosis, and it was felt that further prognostic factors, like pupil size and reaction, should be included as well. Finally, an increasing number of cases did not receive a RISC prognosis due to the missing values. Therefore, there was a need for an updated model for risk of death prediction in severely injured patients to be developed and validated using the most recent data.MethodsThe TR-DGU has been collecting data from severely injured patients since 1993. All injuries are coded according to the Abbreviated Injury Scale (AIS, version 2008). Severely injured patients from Europe (ISS ≥4) documented between 2010 and 2011 were selected for developing the new score (n = 30,866), and 21,918 patients from 2012 were used for validation. Age and injury codes were required, and transferred patients were excluded. Logistic regression analysis was applied with hospital mortality as the dependent variable. Results were evaluated in terms of discrimination (area under the receiver operating characteristic curve, AUC), precision (observed versus predicted mortality), and calibration (Hosmer-Lemeshow goodness-of-fit statistic).ResultsThe mean age of the development population was 47.3 years; 71.6% were males, and the average ISS was 19.3 points. Hospital mortality rate was 11.5% in this group. The new RISC II model consists of the following predictors: worst and second-worst injury (AIS severity level), head injury, age, sex, pupil reactivity and size, pre-injury health status, blood pressure, acidosis (base deficit), coagulation, haemoglobin, and cardiopulmonary resuscitation. Missing values are included as a separate category for every variable. In the development and the validation dataset, the new RISC II outperformed the original RISC score, for example AUC in the development dataset 0.953 versus 0.939.ConclusionsThe updated RISC II prognostic score has several advantages over the previous RISC model. Discrimination, precision and calibration are improved, and patients with partial missing values could now be included. Results were confirmed in a validation dataset.
IntroductionIsolated vital signs (for example, heart rate or systolic blood pressure) have been shown unreliable in the assessment of hypovolemic shock. In contrast, the Shock Index (SI), defined by the ratio of heart rate to systolic blood pressure, has been advocated to better risk-stratify patients for increased transfusion requirements and early mortality. Recently, our group has developed a novel and clinical reliable classification of hypovolemic shock based upon four classes of worsening base deficit (BD). The objective of this study was to correlate this classification to corresponding strata of SI for the rapid assessment of trauma patients in the absence of laboratory parameters.MethodsBetween 2002 and 2011, data for 21,853 adult trauma patients were retrieved from the TraumaRegister DGU® database and divided into four strata of worsening SI at emergency department arrival (group I, SI <0.6; group II, SI ≥0.6 to <1.0; group III, SI ≥1.0 to <1.4; and group IV, SI ≥1.4) and were assessed for demographics, injury characteristics, transfusion requirements, fluid resuscitation and outcomes. The four strata of worsening SI were compared with our recently suggested BD-based classification of hypovolemic shock.ResultsWorsening of SI was associated with increasing injury severity scores from 19.3 (± 12) in group I to 37.3 (± 16.8) in group IV, while mortality increased from 10.9% to 39.8%. Increments in SI paralleled increasing fluid resuscitation, vasopressor use and decreasing hemoglobin, platelet counts and Quick’s values. The number of blood units transfused increased from 1.0 (± 4.8) in group I to 21.4 (± 26.2) in group IV patients. Of patients, 31% in group III and 57% in group IV required ≥10 blood units until ICU admission. The four strata of SI discriminated transfusion requirements and massive transfusion rates equally with our recently introduced BD-based classification of hypovolemic shock.ConclusionSI upon emergency department arrival may be considered a clinical indicator of hypovolemic shock in respect to transfusion requirements, hemostatic resuscitation and mortality. The four SI groups have been shown to equal our recently suggested BD-based classification. In daily clinical practice, SI may be used to assess the presence of hypovolemic shock if point-of-care testing technology is not available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.