Mutation of a receptor tyrosine kinase gene, Mertk, in the Royal College of Surgeons (RCS) rat results in defective phagocytosis of photoreceptor outer segments by the retinal pigment epithelium (RPE) and retinal degeneration. We screened the human orthologue, MERTK, located at 2q14.1 (ref. 10), in 328 DNA samples from individuals with various retinal dystrophies and found three mutations in three individuals with retinitis pigmentosa (RP). Our findings are the first conclusive evidence implicating the RPE phagocytosis pathway in human retinal disease.
The microphthalmia with linear skin defects syndrome (MLS, or MIDAS) is an X-linked dominant male-lethal disorder almost invariably associated with segmental monosomy of the Xp22 region. In two female patients, from two families, with MLS and a normal karyotype, we identified heterozygous de novo point mutations--a missense mutation (p.R217C) and a nonsense mutation (p.R197X)--in the HCCS gene. HCCS encodes the mitochondrial holocytochrome c-type synthase that functions as heme lyase by covalently adding the prosthetic heme group to both apocytochrome c and c(1). We investigated a third family, displaying phenotypic variability, in which the mother and two of her daughters carry an 8.6-kb submicroscopic deletion encompassing part of the HCCS gene. Functional analysis demonstrates that both mutant proteins (R217C and Delta 197-268) were unable to complement a Saccharomyces cerevisiae mutant deficient for the HCCS orthologue Cyc3p, in contrast to wild-type HCCS. Moreover, ectopically expressed HCCS wild-type and the R217C mutant protein are targeted to mitochondria in CHO-K1 cells, whereas the C-terminal-truncated Delta 197-268 mutant failed to be sorted to mitochondria. Cytochrome c, the final product of holocytochrome c-type synthase activity, is implicated in both oxidative phosphorylation (OXPHOS) and apoptosis. We hypothesize that the inability of HCCS-deficient cells to undergo cytochrome c-mediated apoptosis may push cell death toward necrosis that gives rise to severe deterioration of the affected tissues. In summary, we suggest that disturbance of both OXPHOS and the balance between apoptosis and necrosis, as well as the X-inactivation pattern, may contribute to the variable phenotype observed in patients with MLS.
The locus for autosomal dominant congenital stationary night blindness (adCSNB) has recently been assigned to distal chromosome 4p by linkage analysis in a large Danish family. Within the candidate gene encoding the beta-subunit of rod photoreceptor cGMP-specific phosphodiesterase (beta PDE), we have identified a heterozygous C to A transversion in exon 4, predicting a His258Asp change in the polypeptide. We found a perfect cosegregation (Zmax = 22.6 at theta = 0.00) of this mutation with the disease phenotype suggesting that this missense mutation is responsible for the disease in this pedigree. Homozygous nonsense mutations in the beta PDE gene have been found recently in patients with autosomal recessive retinitis pigmentosa, a common hereditary photoreceptor dystrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.