Increased glucose uptake and accumulation of lactate, even under normoxic conditions (i.e., aerobic glycolysis or the Warburg Effect), is a common feature of cancer cells. This phenomenon clearly indicates that lactate is not a surrogate of tumor hypoxia. Tumor lactate can predict for metastases and overall survival of patients, as shown by several studies of different entities. Metastasis of tumors is promoted by lactateinduced secretion of hyaluronan by tumor-associated fibroblasts that create a milieu favorable for migration. Lactate itself has been found to induce the migration of cells and cell clusters. Furthermore, radioresistance has been positively correlated with lactate concentrations, suggesting an antioxidative capacity of lactate. Findings on interactions of tumor metabolites with immune cells indicate a contribution of lactate to the immune escape. Furthermore, lactate bridges the gap between high lactate levels in wound healing, chronic inflammation, and cancer development. Tumor cells ensure sufficient oxygen and nutrient supply for proliferation through lactate-induced secretion of VEGF, resulting in the formation of new vessels. In summary, accumulation of lactate in solid tumors is a pivotal and early event in the development of malignancies. The determination of lactate should enter further clinical trials to confirm its relevance in cancer biology. Cancer Res; 71(22); 6921-5. Ó2011 AACR.
The postreplicative repair of double-strand breaks (DSBs) is thought to require sister chromatid cohesion, provided by the cohesin complex along the chromosome arms. A further specialized role for cohesin in DSB repair is suggested by its de novo recruitment to regions of DNA damage in mammals. Here, we show in budding yeast that a single DSB induces the formation of a approximately 100 kb cohesin domain around the lesion. Our analyses suggest that the primary DNA damage checkpoint kinases Mec1p and Tel1p phosphorylate histone H2AX to generate a large domain, which is permissive for cohesin binding. Cohesin binding to the phospho-H2AX domain is enabled by Mre11p, a component of a critical repair complex, and Scc2p, a component of the cohesin loading machinery that is necessary for sister chromatid cohesion. We also provide evidence that the DSB-induced cohesin domain functions in postreplicative repair.
VEGF antagonists are now widely used cancer therapeutics, but predictive biomarkers of response or toxicity remain unavailable. In this study, we analyzed the effects of anti-VEGF therapy on tumor metabolism and therapeutic response by using an integrated set of imaging techniques, including bioluminescence metabolic imaging, 18-fluorodeoxyglucose positron emission tomography, and MRI imaging and spectroscopy. Our results revealed that anti-VEGF therapy caused a dramatic depletion of glucose and an exhaustion of ATP levels in tumors, although glucose uptake was maintained. These metabolic changes selectively accompanied the presence of large necrotic areas and partial tumor regression in highly glycolytic tumors. In addition, we found that the central metabolic protein kinase AMP-activated protein kinase (AMPK)-a cellular sensor of ATP levels that supports cell viability in response to energy stress-was activated by anti-VEGF therapy in experimental tumors. AMPK-a2 attenuation increased glucose consumption, tumor cell sensitivity to glucose starvation, and tumor necrosis following anti-VEGF therapy. Taken together, our findings reveal functional links between the Warburg effect and the AMPK pathway with therapeutic responses to VEGF neutralization in tumor xenograft models. Cancer Res; 71(12); 4214-25. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.