The rat ortholog of the WD40 repeat protein Wdr16 is abundantly expressed in testis and cultured ependymal cells. Low levels are found in lung and brain, respectively, while it is absent from kinocilia-free tissues. In testis and ependymal primary cultures, Wdr16 messenger RNA appears concomitantly with the messages for sperm-associated antigen 6, a kinocilia marker, and for hydin, a protein linked to ciliary function and hydrocephalus. In testis, ependyma and respiratory epithelium, the Wdr16 protein is up-regulated together with kinocilia formation. The wdr16 gene is restricted to genera in possession of kinocilia, and it is strongly conserved during evolution. The human and zebrafish proteins are identical in 62% of their aligned amino acids. On the message level, the zebrafish Wdr16 ortholog was found exclusively in kinocilia-bearing tissues by in situ hybridisation. Gene knockdown in zebrafish embryos by antisense morpholino injection resulted in severe hydrocephalus formation with unaltered ependymal morphology or ciliary beat. Wdr16 can be considered a differentiation marker of kinocilia-bearing cells. In the brain, it appears to be functionally related to water homeostasis or osmoregulation. Keywords: cell polarity, cellular differentiation, ependyma, primary cell culture, testis, WD40 repeat protein. et al. 2003, 2006). Therefore, ependymal dysfunction must be expected to result in accordant phenotypes. A frequent form thereof, hydrocephalus, is a pathological, in part inheritable (e.g. Takahashi et al. 1997)
Astroglia-rich rat primary cultures can be grown in a glucose-free medium containing 25 mM sorbitol. After 10 days under these conditions, the total number of cells and DNA content are reduced to 50-60% of those of control cultures, but remain constant thereafter. The specific activities of the sorbitol pathway enzymes, sorbitol dehydrogenase and aldose reductase, are increased 2.5-fold and unchanged, respectively, if the cells are grown in the presence of sorbitol instead of glucose. Treatment with the aldose reductase inhibitor sorbinil does not decrease the number of cells cultured in the glucose-free medium in the presence of sorbitol. Fructose is as good a substrate for the glial cells as sorbitol, whereas out of a number of other polyols tested only xylitol can support the primary cultures for more than 3 days. Neither neuron-rich rat brain primary cultures nor rat glioma cells can be cultured in the sorbitol-containing medium in the absence of glucose. With sorbitol substituting for glucose in the culture medium, effects of glucose deprivation on cellular functions like sugar transport and metabolism can be investigated in glial cultures for an extended period of time.
The present study investigated the role of angiotensin receptors (AT-R) in the survival and inflammatory response of astroglia upon hypoxic injury. Exposure of rat astroglial primary cultures (APC) to hypoxic conditions (HC) led to decreased viability of the cells and to a 3.5-fold increase in TNF-alpha release. AT-R type1 (AT1-R) antagonist losartan and its metabolite EXP3174 decrease the LDH release (by 36 +/- 9%; 45 +/- 6%) from APC under HC. Losartan diminished TNF-alpha release (by 40 +/- 15%) and the number of TUNEL-cells by 204 +/- 38% under HC, alone and together with angiotensin II (ATII), while EXP3174 was dependent on ATII for its effect on TNF-alpha. The AT2-R antagonist, PD123.319, did not influence the release of LDH and TNF-alpha under normoxic (NC) and HC. These data suggest that AT1-R may decrease the susceptibility of astrocytes to hypoxic injury and their propensity to release TNF-alpha. AT1-R antagonists may therefore be of therapeutic value during hypoxia-associated neurodegeneration.
Kidney contains glycogen. Glycogen is degraded by glycogen phosphorylase (GP). This enzyme comes in three isoforms, one of which, the brain isozyme (GP BB), is known to occur in kidney. Its pattern of distribution in rat kidney was studied in comparison to that of the muscle isoform (GP MM) with the aim to see if for GP BB and GP MM there were functional similarities in brain and kidney. In immunoblotting and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) experiments, both isozymes and their respective mRNAs were found in kidney homogenates. GP BB was immunocytochemically detected in collecting ducts which were identified by the marker protein aquaporin-2. GP MM was localized exclusively in interstitial cells of cortex and outer medulla. These cells were identified as fibroblasts by their expression of 5'-ectonucleotidase (cortex) or by their morphology (outer medulla). The physiological role of both isozymes is discussed in respect to local demands of energy and of proteoglycan building blocks.
Heart glycogen represents a store of glucosyl residues which are mobilized by the catalysis of glycogen phosphorylase (GP) and are mainly destined to serve as substrates for the generation of ATP. The brain isoform of GP (GP BB) was studied in rat heart in comparison with the muscle isoform (GP MM) to find functional analogies to the brain. Western blotting and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) experiments revealed that at the protein level, but not at the mRNA level, the content of GP BB is similar in heart and brain. In contrast, GP MM is more abundant in the heart than in the brain. Immunocytochemically GP BB was colocalized with GP MM in cardiomyocytes. GP MM was also detected in interstitial cells identified as fibroblasts. The physiological role of co-expression of GP BB and GP MM in cardiomyocytes and in brain astrocytes is discussed in a comparative way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.