BackgroundEpidemiological studies reported an association between plasma phosphate concentrations and a higher risk for death and cardiovascular events in subjects free of chronic kidney diseases. The main aims of the present study were to determine the influence of a high phosphorus intake in combination with different calcium supplies on phosphorus, calcium, magnesium and iron metabolism as well as fibroblast growth factor 23 (FGF23) concentrations within eight weeks of supplementation.MethodsSixty-two healthy subjects completed the double-blind, placebo-controlled parallel designed study. Supplements were monosodium phosphate and calcium carbonate. During the first two weeks, all groups consumed a placebo sherbet powder, and afterwards, for eight weeks, a sherbet powder according to the intervention group: P1000/Ca0 (1 g/d phosphorus), P1000/Ca500 (1 g/d phosphorus and 0.5 g/d calcium) and P1000/Ca1000 (1 g/d phosphorus and 1 g/d calcium). Dietary records, fasting blood samplings, urine and fecal collections took place.ResultsFasting plasma phosphate concentrations did not change after any intervention. After all interventions, renal excretions and fecal concentrations of phosphorus increased significantly after eight weeks. Renal calcium and magnesium excretion decreased significantly after eight weeks of P1000/Ca0 intervention compared to placebo. Plasma FGF23 concentrations were significantly higher after four weeks compared to eight weeks of all interventions.ConclusionsThe long-term study showed in healthy adults no influence of high phosphorus intakes on fasting plasma phosphate concentrations. A high phosphorus intake without adequate calcium intake seems to have negative impact on calcium metabolism. Plasma FGF23 concentrations increased four weeks after high phosphorus intake and normalized after eight weeks.Trial registrationThe trial is registered at ClinicalTrials.gov as NCT02095392.
BackgroundThe aim of the present study was to determine the effect of calcium phosphate and/or vitamin D3 on bone and mineral metabolism.MethodsSixty omnivorous healthy subjects participated in the double-blind, placebo-controlled parallel designed study. Supplements were tricalcium phosphate (CaP) and cholecalciferol (vitamin D3). At the beginning of the study (baseline), all subjects documented their normal nutritional habits in a dietary record for three successive days. After baseline, subjects were allocated to three intervention groups: CaP (additional 1 g calcium/d), vitamin D3 (additional 10 μg/d) and CaP + vitamin D3. In the first two weeks, all groups consumed placebo bread, and afterwards, for eight weeks, the test bread according to the intervention group. In the last week of each study period (baseline, placebo, after four and eight weeks of intervention), a faecal (three days) and a urine (24 h) collection and a fasting blood sampling took place. Calcium, phosphorus, magnesium and iron were determined in faeces, urine and blood. Bone formation and resorption markers were analysed in blood and urine.ResultsAfter four and eight weeks, CaP and CaP + vitamin D3 supplementations increased faecal excretion of calcium and phosphorus significantly compared to placebo. Due to the vitamin D3 supplementations (vitamin D3, CaP + vitamin D3), the plasma 25-(OH)D concentration significantly increased after eight weeks compared to placebo. The additional application of CaP led to a significant increase of the 25-(OH)D concentration already after four weeks. Bone resorption and bone formation markers were not influenced by any intervention.ConclusionsSupplementation with daily 10 μg vitamin D3 significantly increases plasma 25-(OH)D concentration. The combination with daily 1 g calcium (as CaP) has a further increasing effect on the 25-(OH)D concentration. Both CaP alone and in combination with vitamin D3 have no beneficial effect on bone remodelling markers and on the metabolism of calcium, phosphorus, magnesium and iron.Trial registrationNCT01297023
BackgroundIn recent years, high phosphate intakes were discussed critically. In the small intestine, a part of the ingested phosphate and calcium precipitates to amorphous calcium phosphate (ACP), which in turn can precipitate other intestinal substances, thus leading to a beneficial modulation of the intestinal environment. Therefore, we analysed faecal samples obtained from a human intervention study regarding gut-related parameters.MethodsSixty-two healthy subjects (men, n = 30; women, n = 32) completed the double-blind, placebo-controlled and parallel designed study (mean age: 29 ± 7 years; mean BMI: 24 ± 3 kg/m2). Supplements were monosodium phosphate and calcium carbonate. During the first 2 weeks, all groups consumed a placebo sherbet powder, and afterwards a sherbet powder for 8 weeks according to the intervention group: P1000/Ca0 (1000 mg/d phosphorus), P1000/Ca500 (1000 mg/d phosphorus and 500 mg/d calcium) and P1000/Ca1000 (1000 mg/d phosphorus and 1000 mg/d calcium). After the placebo period and after 8 weeks of intervention faecal collections took place. We determined in faeces: short-chain fatty acids (SCFA) and fat as well as the composition of the microbiome (subgroup) and cyto- and genotoxicity of faecal water (FW). By questionnaire evaluation we examined tolerability of the used phosphorus supplement.ResultsFaecal fat concentrations did not change significantly due to the interventions. Concentrations of faecal total SCFA and acetate were significantly higher after 8 weeks of P1000/Ca500 supplementation compared to the P1000/Ca0 supplementation. In men, faecal total SCFA and acetate concentrations were significantly higher after 8 weeks in the P1000/Ca1000 group compared to the P1000/Ca0 one. None of the interventions markedly affected cyto- and genotoxic activity of FW. Men of the P1000/Ca1000 intervention had a significantly different gut microbial community compared to the men of the P1000/Ca0 and P1000/Ca500 ones. The genus Clostridium XVIII was significantly more abundant in men of the P1000/Ca1000 intervention group compared to the other groups. Supplementations did not cause increased intestinal distress.ConclusionsThe used high phosphorus diet did not influence cyto- and genotoxicity of FW and the concentrations of faecal fat independent of calcium intake. Our study provides first hints for a potential phosphorus-induced modulation of the gut community and the faecal total SCFA content.Trial registrationThe trial is registered at ClinicalTrials.gov as NCT02095392.Electronic supplementary materialThe online version of this article (10.1186/s12937-018-0331-4) contains supplementary material, which is available to authorized users.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.