We previously showed that the 2-oxoglutarate dehydrogenase inhibitor protein OdhI of Corynebacterium glutamicum is phosphorylated by PknG at Thr14, but that also additional serine/threonine protein kinases (STPKs) can phosphorylate OdhI. To identify these, a set of three single (ΔpknA, ΔpknB, ΔpknL), five double (ΔpknAG, ΔpknAL, ΔpknBG, ΔpknBL, ΔpknLG) and two triple deletion mutants (ΔpknALG, ΔpknBLG) were constructed. The existence of these mutants shows that PknA, PknB, PknG and PknL are not essential in C. glutamicum. Analysis of the OdhI phosphorylation status in the mutant strains revealed that all four STPKs can contribute to OdhI phosphorylation, with PknG being the most important one. Only mutants in which pknG was deleted showed a strong growth inhibition on agar plates containing glutamine as carbon and nitrogen source. Thr14 and Thr15 of OdhI were shown to be phosphorylated in vivo, either individually or simultaneously, and evidence for up to two additional phosphorylation sites was obtained. Dephosphorylation of OdhI was shown to be catalysed by the phospho-Ser/Thr protein phosphatase Ppp. Besides OdhI, the cell division protein FtsZ was identified as substrate of PknA, PknB and PknL and of the phosphatase Ppp, suggesting a role of these proteins in cell division.
The filamentous fungus Ashbya gossypii is used for riboflavin biosynthesis on an industrial scale, but even the wild type displays overproduction. Because riboflavin overproduction was known to start at the transition between growth and stationary phase, it was suspected that overproduction was induced at low growth rates. However, chemostatic cultivations performed at different growth rates did not result in any detectable riboflavin formation. In this study, we report that it was not the final growth rate that triggered riboflavin overproduction but a decline in growth rate. Therefore, continuous fermenter cultivations with dilution rate shifts were performed. Peaks of riboflavin overproduction were observed in the wild type and in a RIB3placZ reporter strain after downshifts in dilution rate. Accumulation of riboflavin correlated with an increased expression of lacZ reporter activity. The step size of the downshifts corresponded to the peak size of riboflavin formation and reporter activity. Expression of further RIB genes encoding riboflavin biosynthetic enzymes was analyzed by RT-PCR. RIB mRNA levels of the ribulose-5-phosphate branch of the divided riboflavin biosynthesis pathway (RIB3, RIB4, and RIB5) were found to increase in the riboflavin production phase, whereas the RIB2 and RIB7 mRNA levels belonging to the GTP branch remained constant. We propose that a decline in growth rate triggers the increased expression of RIB3, RIB4, and RIB5 resulting in riboflavin overproduction. Because although a reduction in oxygen supply, temperature increase or decrease, or salt stress did affect growth, but neither did lead to riboflavin overproduction nor did induce RIB3 reporter expression, we conclude that declining nutrition must be the stress stimulus. Because about half of the cells in the hyphae of Ashbya gossypii did not accumulate riboflavin, the regulatory response on the cellular level can be estimated to be at least twice as great in comparison to what we detected as overall signals.
In this study, we provide a comprehensive analysis of the genomic features of the phage CL31 and the infection dynamics with the biotechnologically relevant host strain Corynebacterium glutamicum ATCC 13032. Genome sequencing and annotation of CL31 revealed a 45-kbp genome composed of 72 open reading frames, mimicking the GC content of its host strain (54.4%). An ANI-based distance matrix showed the highest similarity of CL31 to the temperate corynephage Φ16. While the C. glutamicum ATCC 13032 wild type strain showed only mild propagation of CL31, a strain lacking the cglIR-cglIIR-cglIM restriction-modification system was efficiently infected by this phage. Interestingly, the prophage-free strain C. glutamicum MB001 featured an even accelerated amplification of CL31 compared to the ∆resmod strain suggesting a role of cryptic prophage elements in phage defense. Proteome analysis of purified phage particles and transcriptome analysis provide important insights into structural components of the phage and the response of C. glutamicum to CL31 infection. Isolation and sequencing of CL31-resistant strains revealed SNPs in genes involved in mycolic acid biosynthesis suggesting a role of this cell envelope component in phage adsorption. Altogether, these results provide an important basis for further investigation of phage-host interactions in this important biotechnological model organism.
In this study, we provide a comprehensive analysis of the genomic features of the phage CL31 and the infection dynamics with the biotechnologically relevant host strain Corynebacterium glutamicum ATCC 13032. Genome sequencing and annotation of CL31 revealed a 45-kbp genome composed of 72 open reading frames, mimicking the GC content of its host strain (54.4 %). An ANI-based distance matrix showed the highest similarity of CL31 to the temperate corynephage φ16. While the C. glutamicum ATCC 13032 wild type strain showed only mild propagation of CL31, a strain lacking the cglIR-cglIIR-cglIM restriction-modification system was efficiently infected by this phage. Interestingly, the prophage-free strain C. glutamicum MB001 featured an even accelerated amplification of CL31 compared to the Δresmod strain suggesting a role of cryptic prophage elements in phage defense. Proteome analysis of purified phage particles and transcriptome analysis provide important insights into structural components of the phage and the response of C. glutamicum to CL31 infection. Isolation and sequencing of CL31-resistant strains revealed SNPs in genes involved in mycolic acid biosynthesis suggesting a role of this cell envelope component in phage adsorption. Altogether, these results provide an important basis for further investigation of phage-host interactions in this important biotechnological model organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.