MicroRNAs (miRNA) aberrantly expressed in tumors may offer novel therapeutic approaches to treatment. miR-145 is downregulated in various cancers including colon carcinoma in which in vitro studies have established proapoptotic and antiproliferative roles. miR-33a was connected recently to cancer through its capacity to downregulate the oncogenic kinase Pim-1. To date, miRNA replacement therapy has been hampered by the lack of robust nonviral delivery methods for in vivo administration. Here we report a method of miRNA delivery by using polyethylenimine (PEI)-mediated delivery of unmodified miRNAs, using miR-145 and miR-33a to preclinically validate the method in a mouse model of colon carcinoma. After systemic or local application of low molecular weight PEI/miRNA complexes, intact miRNA molecules were delivered into mouse xenograft tumors, where they caused profound antitumor effects. miR-145 delivery reduced tumor proliferation and increased apoptosis, with concomitant repression of c-Myc and ERK5 as novel regulatory target of miR-145. Similarly, systemic injection of PEI-complexed miR-33a was validated as a novel therapeutic targeting method for Pim-1, with antitumor effects comparable with PEI/siRNA-mediated direct in vivo knockdown of Pim-1 in the model. Our findings show that chemically unmodified miRNAs complexed with PEI can be used in an efficient and biocompatible strategy of miRNA replacement therapy, as illustrated by efficacious delivery of PEI/miR-145 and PEI/miR-33a complexes in colon carcinoma. Cancer Res; 71(15); 5214-24. Ó2011 AACR.
The constitutively active serine/threonine kinase Pim-1 is upregulated in different cancer types, mainly based on the action of several interleukines and growth factors at the transcriptional level. So far, a regulation of oncogenic Pim-1 by microRNAs (miRNAs) has not been reported. Here, we newly establish miR-33a as a miRNA with potential tumor suppressor activity, acting through inhibition of Pim-1. A screen for miRNA expression in K562 lymphoma, LS174T colon carcinoma and several other cell lines revealed generally low endogenous miR33a levels relative to other miRNAs. Transfection of K562 and LS174T cells with a miR-33a mimic reduced Pim-1 levels substantially. In contrast, the cell-cycle regulator cyclin-dependent kinase 6 predicted to be a conserved miR-33a target, was not downregulated by the miR-33a mimic. Seed mutagenesis of the Pim-1 3 0 -untranslated region in a luciferase reporter construct and in a Pim-1 cDNA expressed in Pim-1-deficient Skov-3 cells demonstrated specific and direct downregulation of Pim-1 by the miR-33a mimic. The persistence of this effect was comparable to that of a small interfering RNA-mediated knockdown of Pim-1, resulting in decelerated cell proliferation. In conclusion, we demonstrate the potential of miR-33a to act as a tumor suppressor miRNA, which suggests miR-33a replacement therapy through delivery of miR mimics as a novel therapeutic strategy.
We demonstrate that Pim-1 plays a pivotal role in several tumor-relevant signaling pathways and establish the functional relevance of Pim-1 in colon carcinoma. Our results also substantiate the RNAi-mediated Pim-1 knockdown based on polymeric polyethylenimine/small interfering RNA nanoparticles as a promising therapeutic approach.
Glioblastoma (GBM), WHO grade IV, is the most aggressive primary brain tumor in adults. The median survival time using standard therapy is only 12–15 months with a 5-year survival rate of around 5%. Thus, new and effective treatment modalities are of significant importance. Signal transducer and activator of transcription 3 (Stat3) is a key signaling protein driving major hallmarks of cancer and represents a promising target for the development of targeted glioblastoma therapies. Here we present data showing that the therapeutic application of siRNAs, formulated in nanoscale lipopolyplexes (LPP) based on polyethylenimine (PEI) and the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), represents a promising new approach to target Stat3 in glioma. We demonstrate that the LPP-mediated delivery of siRNA mediates efficient knockdown of Stat3, suppresses Stat3 activity and limits cell growth in murine (Tu2449) and human (U87, Mz18) glioma cells in vitro. In a therapeutic setting, intracranial application of the siRNA-containing LPP leads to knockdown of STAT3 target gene expression, decreased tumor growth and significantly prolonged survival in Tu2449 glioma-bearing mice compared to negative control-treated animals. This is a proof-of-concept study introducing PEI-based lipopolyplexes as an efficient strategy for therapeutically targeting oncoproteins with otherwise limited druggability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.