An algal feedstock or biomass may contain a very high oil fraction, and thus could be used for the production of advanced biofuels via different conversion processes. Its major advantage apart from its large oil fraction is the ability to convert almost all the energy from the feedstock into different varieties of useful products. In the research to displace fossil fuels, algae feedstock has emerged as a suitable candidate not only because of its renewable and sustainable features but also for its economic credibility based on the potential to match up with the global demand for transportation fuels. Cultivating this feedstock is very easy and could be developed with little or even no supervision, with the aid of wastewater not suitable for human consumption while absorbing CO2 from the atmosphere. The overall potential for algae applications generally shows that this feedstock is still an untapped resource, and it could be of huge commercial benefits to the global economy at large because algae exist in millions compared to terrestrial plants. Algae applications are evident for everyday consumption via foods products, non-foods products, fuel, and energy. Biofuels derived from algae have no impact on the environment and the food supply unlike biofuels produced from crops. However, any cultivation method employed could control the operating cost and the technicalities involved, which will also influence the production rate and strain. The scope of this paper is to review the current status of algae as a potential feedstock with diverse benefit for the resolution of the global energy demand, and environmental pollution control of GHG.
A comprehensive chemical kinetics and computational fluid-dynamics (CFD) analysis were performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. The developed syngas chemical kinetics mechanism was validated by comparing ignition delay, in-cylinder pressure, temperature and laminar flame speed predictions against corresponding experimental and simulated data obtained by using the most commonly used chemical kinetics mechanisms developed by other authors. Sensitivity analysis showed that reactivity of syngas mixtures was found to be governed by H 2 and CO chemistry for hydrogen concentrations lower than 50% and mostly by H 2 chemistry for hydrogen concentrations higher than 50%. In the mechanism validation, particular emphasis is placed on predicting the combustion under high pressure conditions. For high hydrogen concentration in syngas under high pressure, the reactions HO 2 +HO 2 =H 2 O 2 +O 2 and H 2 O 2 +H=H 2 +HO 2 were found to play important role in in-cylinder combustion and heat production. The rate constants for H 2 O 2 +H=H 2 +HO 2 reaction showed strong sensitivity to high-pressure ignition times and has considerable uncertainty. Developed mechanism was used in CFD analysis to predict in-cylinder combustion of syngas and results were compared with experimental data. Crank angle-resolved spatial distribution of in-cylinder spray and combustion temperature was obtained. The constructed mechanism showed the closest prediction of combustion for both biomass and coke-oven syngas in a micro-pilot ignited supercharged dual-fuel engine.
This paper is concerned with engine experiments and spectroscopic analysis of premixed mixture ignition in the end-gas region (PREMIER) combustion in a pilot fuel ignited, natural gas dual-fuel engine. The results reveal the characteristics and operating parameters that induce and affect this combustion mode. The PREMIER combustion is followed by natural gas flame propagation. Pilot-injected diesel fuel ignites the natural gas/air mixture, and the flame propagates before the natural gas/air mixture is autoignited in the end-gas region. This combustion cycle differs from a knocking cycle in terms of combustion and emission characteristics. The PREMIER combustion can be controlled by pilot fuel injection timing, the equivalence ratio, and the exhaust gas recirculation (EGR) rate, and can be used as an effective method for high load extension on a dual-fuel engine. An analysis of the relationship between the maximum in-cylinder pressure and its crank angle (CA) is used to compare combustion dynamics during conventional, PREMIER, and knocking combustion. In PREMIER combustion, the heat release gradually transforms from the slower first-stage flame rate to the faster second-stage rate. During PREMIER combustion, the maximum indicated mean effective pressure (IMEP) and thermal efficiency increase by about 25 per cent compared with those of conventional combustion, and low carbon monoxide (CO) and total hydrocarbon (HC) emissions can be achieved. However, nitrogen oxide (NOx) emissions increase. Spectroscopic analysis shows that the intensity of the OH* emissions in the end-gas region increases as the combustion mode transforms from conventional to PREMIER to knocking. In all three modes, emission fluctuations above 650 nm can be observed in the end-gas region. These emissions are attributed to the luminosity from soot particles formed during the concurrent diesel fuel combustion.
This paper reviews the sector of waste-to-energy looking at the main processes and feedstock involved. Within this, incineration, gasification, pyrolysis, anaerobic digestion and hydrothermal liquefaction are named and discussed. Through the discussions and scrutiny, manure is highlighted as a significant source of ammonia, methane, and nitrogen oxides emission, estimated to be 40%, 22.5% and 28% respectively of the total UK's anthropogenic emissions. Manure, and indeed the pollution it poses, are shown to remain largely ignored. In waste to energy processing, manure is capable of providing biogas for a number of pathways including electricity generation. Anaerobic digestion is highlighted as a suitable process with the crucial capability of drastically reducing the pollution potential of manure and slurry compared to no processing, with up to 90% reduction in methane and 50% reduction in nitrogen oxide emissions. If the majority of the 90 million tonnes of manure and slurry in the UK were to be processed through biogas harvesting, this could have the potential of producing more than 1.615 TWh of electricity. As such, the economics and legislation surrounding the implementation of anaerobic digestion for manure and slurry are discussed. In the end, restraining factors that limit the implementation of anaerobic digesters on farms in the UK are discussed. These are found to be mainly capital costs, lack of grants, insufficiently high tariff systems, rather than low gas yields from manure and slurry. Response to Reviewers:Reviewer #1: The authors have answered comments sufficiently and in great detail. I consider the revision of the text to be sufficient. However, I still have a few comments.1) Check the section numbering, see "2.1 Biomass waste" and "2.1. Landfill mining". This has been corrected2) Unify the units, see "Lower heating value (MJ/Kg)" in Tab. 3 vs "Higher heating value (HHV) (MJ/Kg)" in Tab. 4 etc.We didn't quite understand what reviewer wants us to do here. In Table 3 we have shown the Lower Heating Value (LHV) in MJ/kg and also the water content. In Table 4 we have shown the Higher Heating Value (HHV) in MJ/kg. The references for these values are also shown in these tables. These values were taken from the published sources where authors experimentally determined these values. If the reviewer wants
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.