Soil contamination is associated with a high potential for health issues. This study aimed to investigate the bioaccumulation of heavy metals and its associated health impact among residents near a mining area. We performed environmental monitoring by analyzing lead (Pb), cadmium (Cd), and arsenic (As) levels in soil and rice samples, as well as biomonitoring by analyzing blood and urine samples from 58 residents living near the mine. Additionally, concentration trends were investigated among 26 participants in a 2013 study. The Cd and As levels in the soil samples and Cd levels in the rice samples exceeded the criteria for concern. The geometric mean blood Cd level (2.12 μg/L) was two times higher than that in the general population aged > 40 years. The blood Cd level showed decreasing trends from the previous measurements of 4.56–2.25 μg/L, but was still higher than that in the general population. The blood and urine Cd levels were higher in those with a low estimated glomerular filtration rate (eGFR) than in those with normal eGFR. In conclusion, heavy metals from mining areas can accumulate in soil and rice, adversely impacting human health. Continuous environmental monitoring and biomonitoring are required to ensure the safety of residents.
Abandoned metal mines and refineries are considered environmentally vulnerable areas owing to high levels of exposure to heavy metals. This study examined the association between heavy metal exposure and renal function indicators. We studied a total of 298 participants, of which 74 and 68 resided in low- and high-exposure abandoned metal mine areas, respectively, with 121 in the refinery area and 35 in the control area. Blood and urine samples were collected from the participants to analyze the levels of blood lead, cadmium, and creatinine and urinary cadmium, NAG, and β2-MG. The estimated glomerular filtration rate, which is calculated using the Chronic Kidney Disease Epidemiology Collaboration equation, was used for assessments. The study participants comprised more females than males, and their mean age was 70.3 years. The blood lead and cadmium as well as urinary cadmium levels were 2.12 μg/dL, 1.89 μg/L, and 2.11 μg/L, respectively, in the heavy metal-exposure areas, and 1.18 μg/dL, 0.89 μg/L, and 1.11 μg/L, respectively, in the control area. The odds ratio (OR) for exceeding the reference value showed that blood cadmium in the refinery area was 38 times higher than that in the control area. Urinary cadmium was seven times higher in the low-exposure abandoned metal mine area than in the control area. NAG showed a positive correlation with urinary cadmium in all areas. In the refinery area, correlations were observed between β2-MG and urinary cadmium levels and the eGFR and blood cadmium level; in the high-exposure abandoned metal mine area, correlations were observed between NAG, β2-MG, and the eGFR and blood cadmium. In this study, the association between Cd exposure and some renal function indicators was observed. This study’s findings and the obtained biological samples can serve as a basis for future molecular biological research.
Background We evaluated the level and factors of heavy metal exposure to children residing in the Togttsetsii, Khanbogd, and Bayandalai soums of South Gobi province, Mongolia. Methods A total of 118 children aged 9–12 years were surveyed, and the level of heavy metal exposure in their bodies was investigated. Exposure was investigated by measuring concentrations of heavy metals such as cadmium, lead, and mercury in the blood; mercury concentration in the hair; and total arsenic in the urine. Results Blood cadmium concentration had geometric averages of 0.16 µg/L in the children from Bayandalai, 0.15 µg/L Tsogttsetsii, and 0.16 µg/L Khanbogd. Blood lead concentration showed a relatively higher geometric average of 7.42 µg/dL in the children from Bayandalai compared to 4.78 µg/dL and 5.15 µg/dL in those from Tsogttsetsii and Khanbogd, respectively. While blood mercury concentration was the highest in the children from Bayandalai, with a value of 0.38 µg/L, those from Tsogttsetsii and Khanbogd had similar concentrations of 0.29 µg/L and 0.29 µg/L, respectively. Hair mercury concentration was the highest in the children from Bayandalai, with a value of 78 µg/g, a particularly significant difference, with a concentration of 0.50 µg/g in those from Khanbogd. Urine arsenic concentration was the highest in the children from Khanbogd, with a value of 36.93 µg/L; it was 26.11 µg/L in those from Bayandalai and 23.89 µg/L in those from Tsogttsetsii. Conclusions The high blood lead concentration of children in Bayandalai was judged to be due to other factors in addition to mine exposure; the reason why blood and hair mercury concentration was higher in children from Bayandalai may have been due to exposure to many small-scale gold mines in the area. In the case of Khanbogd, it was estimated that the high arsenic level in urine was caused by the effect of mines.
Abandoned metal mines and refineries are considered environmentally vulnerable areas owing to high levels of exposure to heavy metals. This study examined the association between heavy metal exposure and renal function indicators. We studied a total of 298 participants, of which 74 and 68 resided in low- and high-exposure abandoned metal mine areas, respectively, with 121 in the refinery area and 35 in the control area. Blood and urine samples were collected from the participants to analyze the levels of blood lead, cadmium, and creatinine and urinary cadmium, NAG, and β2-MG. The estimated glomerular filtration rate, which is calculated using the Chronic Kidney Disease Epidemiology Collaboration equation, was used for assessments. The study participants comprised more females than males, and their mean age was 70.3 years. The blood lead and cadmium as well as urinary cadmium levels were 2.12 μg/dL, 1.89 μg/L, and 2.11 μg/L, respectively, in the heavy metal-exposure areas, and 1.18 μg/dL, 0.89 μg/L, and 1.11 μg/L, respectively, in the control area. The odds ratio (OR) for exceeding the reference value showed that blood cadmium in the refinery area was 38 times higher than that in the control area. Urinary cadmium was seven times higher in the low-exposure abandoned metal mine area than in the control area. NAG showed a positive correlation with urinary cadmium in all areas. In the refinery area, correlations were observed between β2-MG and urinary cadmium levels and the eGFR and blood cadmium level; in the high-exposure abandoned metal mine area, correlations were observed between NAG, β2-MG, and the eGFR and blood cadmium. In this study, the association between Cd exposure and some renal function indicators was observed. This study’s findings and the obtained biological samples can serve as a basis for future molecular biological research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.