The Piedmont Zone of the Indo-Gangetic Plain contains numerous, laterally coalescing small alluvial fans. The Latest Pleistocene-Holocene 30 km long Gaula Fan can be divided into gravelly proximal fan (0-14 km downstream), gravel-sand rich mid fan (14-22 km) and sandmud dominated distal fan (22-30 km). The fan succession is composed of two fan expansion cycles A and B. Separated by an undulatory erosional contact of regional extent, cycle A is characterized by river borne clast-supported gravelly deposits, and the overlying fan expansion cycle B by matrix-supported gravely debris flows. The main process behind fan development has been lateral migration of channels over the fan surface probably due to rapid sedimentation caused by increased sediment supply, and the fluctuating water budget in response to changing climate. The water laid expansion cycle A represents a humid phase. The debris flow deposits of expansion cycle B suggest a dry phase. Approximately between 8 and 3 Ka, cycle B also indicates a phase of tectonic instability in the Siwalik Hills forming the mountain front. The tectonic activity caused incision of rivers into the fan surface, and in turn resulted in reduced fan-building activity. At present the fan surface is accreting by sheet flow processes.
Borehole data reveals that during Late Quaternary, the Ganga river was non-existent in its present location near Varanasi. Instead, it was flowing further south towards peripheral craton. Himalayan derived grey micaceous sands were being carried by southward flowing rivers beyond the present day water divide of Ganga and mixed with pink arkosic sand brought by northward flowing peninsular rivers. Subsequently, the Ganga shifted to its present position and got incised. Near Varanasi, the Ganga river is flowing along a NW-SE tectonic lineament. The migration of Ganga river is believed to have been in response to basin expansion caused due to Himalayan tectonics during Middle Pleistocene times.Multi-storied sand bodies generated as a result of channel migration provide excellent aquifers confined by a thick zone of muddy sediments near the surface. Good quality potable water is available at various levels below about 70 m depth in sandy aquifers. Craton derived gravelly coarseto-medium grained sand forms the main aquifer zones of tens of meter thickness with enormous yield. In contrast, the shallow aquifers made up of recycled interfluve silt and sandy silt occur under unconfined conditions and show water-level fluctuation of a few meters during pre-and postmonsoon periods.
Qualitative and quantitative analysis of river systems in the Lower Siwalik sequence has enabled characterization of channel patterns, river metamorphosis and resulting sandstone body evolution in time and space. Processes related six lithofacies repeat to generate 8-10 m thick multistoried sandstone complexes deposited in perennial channel belts. Based on lateral mapping of the sandstone bodies, the surfaces of genetic significance ranging from 3 rd , 4 th and 5 th order, suggest presence of meandering, braided and anastomosing river patterns that were responsible for the Lower Siwalik sedimentation. Variation in local base-level in response to allogenic factors including climate and tectonics forced river systems to acquire different patterns. Eustasy seems to control large-scale basin level changes.Quantitatively reconstructed morphological parameters and their comparison with modern and ancient analogues, supported by other independent evidences such as stratigraphical position of sandstone bodies in vertically measured columns and mineralogical characteristics of channel sandstones, enabled to decipher the geomorphic positioning of the Lower Siwalik channels in distal parts of megafan and interfluve areas within the foreland basin setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.