Using the boxcar representation in the spatial domain and a signal-space representation of its frequency-weighted -space, an iterative prediction method is developed to derive an improved low-resolution phase approximation for phase correction. Compared to the homodyne filter, the proposed predictor is found to be more efficient due to its capability of exhibiting an equivalent degree of performance using a lower number of fractional lines. The phase correction performance is illustrated using partially acquired susceptibility weighted images (SWI). An extension of the predictor into higher frequency regions of phaseencodes in conjunction with a signal-space projection in the frequency-weighted partial k-space is shown to provide restoration of fine structural details of sparse magnitude images. The application of subspace projection filtering is demonstrated using magnetic resonance angiogram (MRA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.