The Industrial Internet of Things has grown significantly in recent years. While implementing industrial digitalization, automation, and intelligence introduced a slew of cyber risks, the complex and varied industrial Internet of Things environment provided a new attack surface for network attackers. As a result, conventional intrusion detection technology cannot satisfy the network threat discovery requirements in today’s Industrial Internet of Things environment. In this research, the authors have used reinforcement learning rather than supervised and unsupervised learning, because it could very well improve the decision-making ability of the learning process by integrating abstract thinking of complete understanding, using deep knowledge to perform simple and nonlinear transformations of large-scale original input data into higher-level abstract expressions, and using learning algorithm or learning based on feedback signals, in the lack of guiding knowledge, which is based on the trial-and-error learning model, from the interaction with the environment to find the best good solution. In this respect, this article presents a near-end strategy optimization method for the Industrial Internet of Things intrusion detection system based on a deep reinforcement learning algorithm. This method combines deep learning’s observation capability with reinforcement learning’s decision-making capability to enable efficient detection of different kinds of cyberassaults on the Industrial Internet of Things. In this manuscript, the DRL-IDS intrusion detection system is built on a feature selection method based on LightGBM, which efficiently selects the most attractive feature set from industrial Internet of Things data; when paired with deep learning algorithms, it effectively detects intrusions. To begin, the application is based on GBM’s feature selection algorithm, which extracts the most compelling feature set from Industrial Internet of Things data; then, in conjunction with the deep learning algorithm, the hidden layer of the multilayer perception network is used as the shared network structure for the value network and strategic network in the PPO2 algorithm; and finally, the intrusion detection model is constructed using the PPO2 algorithm and ReLU (R). Numerous tests conducted on a publicly available data set of the Industrial Internet of Things demonstrate that the suggested intrusion detection system detects 99 percent of different kinds of network assaults on the Industrial Internet of Things. Additionally, the accuracy rate is 0.9%. The accuracy, precision, recall rate, F1 score, and other performance indicators are superior to those of the existing intrusion detection system, which is based on deep learning models such as LSTM, CNN, and RNN, as well as deep reinforcement learning models such as DDQN and DQN.
Due to the technical words employed, which are primarily recognized by medical specialists, information retrieval in the medical area is sometimes described as sophisticated. Because of this, users frequently have trouble coming up with queries utilizing these medical phrases. However, this problem may be readily fixed by an information retrieval system that finds the pertinent terms that fit the user's query and automatically creates a ranking document using these keywords. To enhance the IR performance, the Automatic Query expansion method is applied by appending additional query terms for the medical domain. We propose a novel fuzzy-based Grasshopper Optimization Algorithm (GOA) based on automatic query expansion. This work is mainly focused on filtering the most relevant augmented query by utilizing the synchronization score of IR evidence like normalized term frequency, inverse document frequency, and normalization of document length. The main aim of this work is to identify the medical terms that appropriately match the user's queries. The GOA algorithm ranks the terms based on relevance and then identifies the terms with the maximum synchronization value. The documents formed using the optimal expanded query are classified into three types, namely totally relevant, moderately relevant, and marginally relevant. Besides, the comparison of the proposed work is carried out for different performance metrics like Mean-Average Precision, F-measure, Precision-recall, and Precision rank are evaluated and analyzed by using TREC-COVID, TREC Genomics 2007, and MEDLARs medical datasets for the proposed and some of the state-of-art works. For a total of 60 queries, the proposed model offers an F1-Score of 0.964, 0.959, and 0.968 for the MEDLARS, TREC Genomics, and TREC COVID19 datasets, respectively. The E1-score and Mean Reciprocal Rate (MRR) of the proposed model is 0.8 and 0.9 when evaluated using the TREC COVID19 dataset. Performance analyses show that the proposed approach outperforms the other automatic keyword expansion approaches in the medical domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.