Clinical application of strain in neonates requires an understanding of which image acquisition and processing parameters affect strain values. Previous studies have examined frame rate, transmitting frequency, and vendor heterogeneity. However, there is a lack of human studies on how user-regulated spatial and temporal smoothing affect strain values in 36 neonates. This study examined nine different combinations of spatial and temporal smoothing on peak systolic left ventricular longitudinal strain in 36 healthy neonates. Strain values were acquired from four-chamber echocardiographic images in the software-defined epicardial, midwall, and endocardial layers in the six standard segments and average four-chamber stain. Strain values were compared using repeated measure ANOVAs. Overall, spatial smoothing had a larger impact than temporal smoothing, and segmental strain values were more sensitive to smoothing settings than average four-chamber strain. Apicoseptal strain decreased by approximately 4% with increasing spatial smoothing, corresponding to a 13–19% proportional change (depending on wall layer). Therefore, we recommend clinicians be mindful of smoothing settings when assessing segmental strain values.
The aims of this study was to assess the effect of using a four chamber versus a three plane model on speckle tracking derived global longitudinal strain, the effects of drift compensation, the effect of assessing strain in different layers and finally the interplay between these aspects for the assessment of strain in neonates. Speckle tracking derived longitudinal strain was obtained from 22 healthy neonates. ANOVA, Bland–Altman analyses, coefficients of variation and assessment of intraclass correlation coefficients were conducted to assess the effect of the abovementioned aspects as well as assess both inter-observer and intra-observer variability. Neither the use of the three plane model versus the four chamber model nor the use of drift compensation had a substantial effect on global longitudinal strain (less than 1%, depending on which layer was being assessed). A gradient was seen with increasing strain from the epicardial to endocardial layers, similar to what is seen in older subjects. Finally, drift compensation introduced more discrepancy in segmental strain values compared to global longitudinal strain. Global longitudinal strain in healthy neonates remains reasonably consistent regardless of whether the three plane or four chamber model is used and whether drift compensation is applied. Its value increases when one moves from the endocardial to the epicardial layer. Finally, drift compensation introduces more discrepancy for regional measures of longitudinal strain compared to global longitudinal strain.
Speckle tracking echocardiography is a promising method for assessment of myocardial function in fetal and neonatal hearts, but further studies are necessary to validate and optimize the settings for use in fetal cardiology. Previous studies have shown that the definition of the region of interest (ROI) affects strain values in adults. The aim of this study was to investigate how different widths of ROI influences measurements of four-chamber longitudinal systolic strain in fetuses late in pregnancy. Thirty-one singleton, healthy fetuses born to healthy mothers underwent an echocardiographic examination during gestational week 37. Speckle tracking was performed with two different settings for ROI width; the narrowest and second most narrow, provided both widths were assessed as suitable for the myocardial wall thickness of the fetus. We found an inverse correlation between the ROI width and the strain values. Four-chamber longitudinal strain changed from − 20.7 ± 3.6% to − 18.0 ± 4.4% (p < 0.001) with increasing ROI width. Further, strain decreased from the endocardium to the epicardium with multilayer measurements. Different widths of ROI influenced the strain measurements significantly in the fetal heart, comparable to what has been reported in adults. A standardization of the ROI setting could improve the interpretation, and reduce variability in fetal strain measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.