The aim of this contemporary work was to formulate a controlled release mucoadhesive nanoparticle formulation for enhancing the oral bioavailability of Ticagrelor (TG), a BCS class IV drug, having low oral bioavailability of about 36%. The nanoparticles can act as efficient carriers for hydrophobic drugs, due to having high surface area and hence can improve their aqueous solubility due to their hydrophilic nature. The nanoparticles (NPs) of TG were formulated using chitosan (CH) as polymer and sodium tripolyphosphate (TPP) as cross-linker, by ionic gelation technique with varying concentrations of polymer with respect to TG and TPP. Characterization of prepared nanoparticles was carried out to assess zeta potential, size, shape, entrapment efficiency (EE) and loading capacity (LC), using zeta sizer, surface morphology and chemical compatibility analysis. Drug release was observed using UV-Spectrophotometer. By increasing concentration of CH the desired size of particles (106.9 nm), zeta potential (22.6 mv) and poly dispersity index (0.364) was achieved. In vitro profiles showed a controlled and prolonged release of TG in both lower pH-1.2 and neutral pH-7.4 mediums, with effective protection of entrapped TG in simulated gastric conditions. X-ray diffraction patterns (XRD) showed the crystalline nature of formed NPs. Hence, this effort showed that hydrophobic drugs can be effectively encapsulated in nanoparticulate systems to enhance their solubility and stability, ultimately improving their bioavailability and effectiveness with better patient compliance by reducing dosing frequencies as well.
This project was designed to develop pH responsive smart chitosan/agarose‐g‐poly (methacrylate) hydrogels using free radical polymerization for targeted delivery of Capecitabine (a prodrug of 5‐fluorouracil) for the treatment of colorectal cancer. Developed hydrogels were evaluated for drug loading efficiency, thermal stability, compatibility of components, morphology, swelling behavior, release kinetics and acute oral toxicity studies in rabbits. Moreover, pharmacokinetic parameters were also measured in healthy rabbits. Structural entanglement was confirmed via FTIR providing evidence of hydrogel formation. Loading of Capecitabine was in range from 60.35% to 62.57%. Hydrogels showed pH‐responsive behavior by providing maximum swelling of 93.84% at pH 7.4 identical to colon. Release of Capecitabine from hydrogels was in controlled pattern over a period of 36 h. Toxicity studies revealed no signs of ocular, dermal and oral toxicity providing safety evidence of hydrogels. In addition, pharmacokinetic evaluations of Capecitabine loaded hydrogels showed significant increase in plasma half‐life of 17 h and AUC of 57.65 μg.h/ml in comparison to pure Capecitabine solution. Therefore, these results strongly suggest that newly formed hydrogels are biocompatible, capable of providing sustained release at specific pH and can be employed as a cargo for colorectal delivery.
The objective of the current study was to achieve a sustained release profile of capecitabine (CAP), an anticancer agent frequently administered in conventional dosage form due to its short plasma half-life. A drug-loaded smart pH responsive chitosan/fenugreek-g-poly (MAA) hydrogel was synthesized by an aqueous free radical polymerization technique. The developed network was evaluated for capecitabine loading %, swelling response, morphology, structural and compositional characteristics, and drug release behavior. Significantly higher swelling and in vitro drug release rate were exhibited by formulations at pH 7.4 than at pH 1.2, demonstrating the pH responsive character of hydrogels. Swelling percentage and CAP loading ranged within 74.45–83.54% and 50.13–72.43%, respectively. Maximum release, up to 93%, was demonstrated over 30 h, evidencing the controlled release pattern of CAP from hydrogels. The optimized formulation was further screened for acute oral toxicity studies. No signs of oral, dermal, or ocular toxicities were noticed, confirming safety evidence of the network. Furthermore, pharmacokinetic analysis demonstrated the sustained release response of CAP from hydrogels as confirmed by a significant increase in plasma half-life (t1/2) (13 h) and AUC (42.88 µg h/mL) of CAP. Based on these findings, fabricated hydrogels are strongly recommended as a biocompatible carrier for colorectal delivery of active agents.
In the present study, pH-sensitive, biodegradable, and biocompatible Na-CMC/pectin poly(methacrylic acid) hydrogels were synthesized using an aqueous free radical polymerization technique and encapsulated by cytarabine (anti-cancer drug). The aim of the project was to sustain the plasma profile of cytarabine through oral administration. Sodium carboxymethyl cellulose (Na-CMC) and pectin were cross-linked chemically with methacrylic acid (MAA) as a monomer, using methylene bisacrylamide (MBA) as cross-linker and ammonium per sulfate (APS) as an initiator. Prepared hydrogel formulations were characterized for their texture, morphology, cytarabine loading efficiency, compositional and structural properties, thermal nature, stability, swelling response, drug release profile (pH 1.2 and pH 7.4), and in-vivo pharmacokinetic evaluation. Cytarabine-loaded hydrogels were also evaluated for their safety profile by carrying out toxicity studies in rabbits. Results demonstrated efficient encapsulation of cytarabine into the prepared network with loading ranging from 48.5–82.3%. The highest swelling ratio of 39.38 and maximum drug release of 83.29–85.27% were observed at pH 7.4, highlighting the pH responsiveness of the grafted system. Furthermore, cytarabine maximum release was noticed over 24 h, ensuring a sustained release response for all formulations. Histopathological studies and hemolytic profiles confirmed that the prepared hydrogel system was safe, biocompatible, and non-irritant, showing no symptoms of any toxicities and degeneration in organs. Moreover, pharmacokinetic estimation of the cytarabine-loaded hydrogel showed a remarkable increase in the plasma half-life from 4.44 h to 9.24 h and AUC from 22.06 μg/mL.h to 56.94 μg/mL.h. This study revealed that the prepared hydrogel carrier system has excellent abilities in delivering the therapeutic moieties in a controlled manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.