Transparency of algorithmic systems entails exposing system properties to various stakeholders for purposes that include understanding, improving, and/or contesting predictions. The machine learning (ML) community has mostly considered explainability as a proxy for transparency. With this work, we seek to encourage researchers to study uncertainty as a form of transparency and practitioners to communicate uncertainty estimates to stakeholders. First, we discuss methods for assessing uncertainty. Then, we describe the utility of uncertainty for mitigating model unfairness, augmenting decision-making, and building trustworthy systems. We also review methods for displaying uncertainty to stakeholders and discuss how to collect information required for incorporating uncertainty into existing ML pipelines. Our contribution is an interdisciplinary review to inform how to measure, communicate, and use uncertainty as a form of transparency.
A feature-based model explanation denotes how much each input feature contributes to a model's output for a given data point. As the number of proposed explanation functions grows, we lack quantitative evaluation criteria to help practitioners know when to use which explanation function. This paper proposes quantitative evaluation criteria for feature-based explanations: low sensitivity, high faithfulness, and low complexity. We devise a framework for aggregating explanation functions. We develop a procedure for learning an aggregate explanation function with lower complexity and then derive a new aggregate Shapley value explanation function that minimizes sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.