Multidrug-resistant pathogens causing nosocomial and community acquired infections delineate a significant threat to public health. It had urged to identify new antimicrobials and thus, generated interest in studying macrocyclic metal complex, which has been studied in the past for their antimicrobial activity. Hence, in the present study, we have evaluated the antimicrobial activity of the hexadentated macrocyclic complex of copper (II) (Cu Complex) derived from thiosemicarbazide against Gram-positive and Gram-negative bacteria. We observed increased susceptibility against standard isolates of Staphylococcus aureus with a minimum inhibitory concentration (MIC) range of 6.25 to 12.5 μg/mL. Similar activity was also observed towards methicillin resistant and sensitive clinical isolates of S. aureus from human (n = 20) and animal (n = 20) infections. The compound has rapid bactericidal activity, and we did not observe any resistant mutant of S. aureus. The compound also exhibited antibiofilm activity and was able to disrupt pre-formed biofilms. Cu complex showed increased susceptibility towards intracellular S. aureus and was able to reduce more than 95% of the bacterial load at 10 μg/mL. Overall, our results suggest that Cu complex with its potent anti-microbial and anti-biofilm activity can be used to treat MRSA infections and evaluated further clinically.
Methicillin-Resistant Staphylococcus aureus (MRSA) is a significant threat to human health. Additionally, biofilm forming bacteria becomes more tolerant to antibiotics and act as bacterial reservoir leading to chronic infection. In this study, we characterised the antibiotic susceptibility, biofilm production and sequence types (ST) of 74 randomly selected clinical isolates of S. aureus causing ocular infections. Antibiotic susceptibility revealed 74% of the isolates as resistant against one or two antibiotics, followed by 16% multidrug-resistant isolates (MDR), and 10% sensitive. The isolates were characterized as MRSA (n = 15), Methicillin-sensitive S. aureus (MSSA, n = 48) and oxacillin susceptible mecA positive S. aureus (OS-MRSA, n = 11) based on oxacillin susceptibility, mecA gene PCR and PBP2a agglutination test. All OS-MRSA would have been misclassified as MSSA on the basis of susceptibility test. Therefore, both phenotypic and genotypic tests should be included to prevent strain misrepresentation. In addition, in-depth studies for understanding the emerging OS-MRSA phenotype is required. The role of fem XAB gene family has been earlier reported in OS-MRSA phenotype. Sequence analysis of the fem XAB genes revealed mutations in fem × (K3R, H11N, N18H and I51V) and fem B (L410F) genes. The fem XAB genes were also found down-regulated in OS-MRSA isolates in comparison to MRSA. In OS-MRSA isolates, biofilm formation is regulated by fibronectin binding proteins A & B. Molecular typing of the isolates revealed genetic diversity. All the isolates produced biofilm, however, MRSA isolates with strong biofilm phenotype represent a worrisome situation and may even result in treatment failure.
A series of regioisomeric (2,5‐dimethoxybenzoic acid, veratric acid) analogues were prepared by swapping the carboxylic motif to its oxadiazole bioisostere and have been screened for in vitro anticancer studies by using MTT (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) colorimetric assay. All of them were well characterized by spectroscopic techniques. Among the screened compounds, 9 i (2‐(2,5‐dimethoxyphenyl)‐5‐(5‐phenylthiophen‐2‐yl)‐1,3,4‐oxadiazole) demonstrated superior activity against MDA231 cells. Products 9 i displayed excellent activity against DU145, HCT15 and 10 i (2‐(3,4‐dimethoxyphenyl)‐5‐(5‐phenylthiophen‐2‐yl)‐1,3,4‐oxadiazole) against MDA231 cells. Structure of 10 c (2‐(3,4‐dimethoxyphenyl)‐5‐(2,4,6‐trimethoxyphenyl)‐1,3,4‐oxadiazole) was further authenticated through single crystal X‐ray diffraction. Analogue 9 i have come out to be the best anticancer and antimycobacterial agent.
Staphylococcus aureus is an opportunistic bacterium known to cause severe infections in humans and animals. It is one of the major bacteria causing subclinical and clinical mastitis, leading to significant economic losses in livestock industry. In this study, we have isolated and characterized 80 S. aureus clinical isolates from mastitis-infected animals. The analysis of antimicrobial susceptibility, molecular typing, biofilm production and genetic determinants was performed to understand molecular and phenotypic features of the prevalent pathogen. Our antibiotic susceptibility assays showed the majority (57.5%) of isolates to be multidrug-resistant (MDR), 38.75% resistant and 3.75% sensitive. We found 25% isolates to be methicillin-resistant S. aureus (MRSA) based on oxacillin susceptibility assays. In the MRSA group, maximum isolates (95%) were MDR compared to 45% in MSSA. Multilocus sequence typing (MLST) revealed 15 different STs; ST-97 was the most common ST, followed by ST-2459, ST-1, ST-9 and ST-72. The agr typing showed agr-I as the most common type, followed by type II and III. Most isolates developed biofilms, which ranged in intensity from strong to weak. The presence or absence of lukS, a virulence-related gene, was found to have a substantial relationship with the biofilm phenotype. However, no significant association was found between biofilm formation and antimicrobial resistance or other virulence genes. We also found four MRSA isolates that were mecA negative based on molecular assays. Our findings reveal the prevalence of multidrug-resistant S. aureus clinical isolates in India that are biofilm positive and have critical genetic factors for disease pathogenesis causing bovine mastitis. This study emphasizes the need for the comprehensive surveillance of S. aureus and other mastitis-causing pathogens to control the disease effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.