In the past decades a number of software programs have been developed to infer phylogenetic relationships between populations. However, most of these programs typically use alignments of sequences from genes to build phylogeny. Recently, many standalone or web applications have been developed to handle large-scale whole genome data, but they are either computationally intensive, dependent on third party software or required significant time and resource of a web server. In the post-genomic era, researchers are able to obtain bioinformatically processed high-quality publication-ready whole genome data for many individuals in a population from next generation sequencing companies due to the reduction in the cost of sequencing and analysis. Such genotype data is typically presented in the Variant Call Format (VCF) and there is no simple software available that directly uses this data format to construct the phylogeny of populations in a short time. To address this limitation, we have developed a user-friendly software, VCF2PopTree that uses genome-wide SNPs to construct and display phylogenetic trees in seconds to minutes. For example, it reads a VCF file containing 4 million SNPs and draws a tree in less than 30 seconds. VCF2PopTree accepts genotype data from a local machine, constructs a tree using UPGMA and Neighbour-Joining algorithms and displays it on a web-browser. It also produces pairwise-diversity matrix in MEGA and PHYLIP file formats as well as trees in the Newick format which could be directly used by other popular phylogenetic software programs. The software including the source code, a test VCF file and a documentation are available at: https://github.com/sansubs/vcf2pop.
In the past decades a number of software programs have been developed to deduce the phylogenetic relationship between populations. However, these programs are not suited for large-scale whole genome data. Recently, a few standalone or web applications have been developed to handle genome-wide data, but they were either computationally intensive, dependent on third party software or required significant time and resource of a web server. In the post-genomic era, researchers are able to obtain bioinformatically processed high-quality publication-ready whole genome data for many individuals in a population from next generation sequencing companies due to the reduction in the cost of sequencing and analysis. Such genotype data is typically presented in the Variant Call Format (VCF) and there is no simple software available that uses this data to construct the phylogeny of populations in a short time. To address this limitation, we have developed a one-click user-friendly software, VCF2PopTree that uses gnome-wide SNPs to construct and display phylogenetic trees in seconds to minutes. For example, it reads a 1 GB VCF file and draws a tree in less than 5 minutes. VCF2PopTree accepts genotype data from a local machine, constructs a tree using UPGMA and Neighbour-Joining algorithms and displays it on a web-browser. It also produces pairwise-diversity matrix in MEGA and PHYLIP file formats as well as trees in the Newick format which could be directly used by other popular phylogenetic software programs. The software including the source code, a test VCF input file and short documentation are available at: https://github.com/sansubs/vcf2pop.
Deleterious mutation loads are known to correlate negatively with effective population size (Ne). Due to this reason, previous studies observed a higher proportion of harmful mutations in small populations than that in large populations. However, the mutational load in an admixed population that derived from introgression between individuals from two populations with vastly different Ne is not known. We investigated this using the whole genome data from two subspecies of the mouse (Mus musculus castaneus and Mus musculus musculus) with significantly different Ne. We used the ratio of diversities at nonsynonymous and synonymous sites (dN/dS) to measure the harmful mutation load. Our results showed that this ratio observed for the admixed population was intermediate between those of the parental populations. The dN/dS ratio of the hybrid population was significantly higher than that of M. m. castaneus but lower than that of M. m. musculus. Our analysis revealed a significant positive correlation between the proportion of M. m. musculus ancestry in admixed individuals and their dN/dS ratio. This suggests that the admixed individuals with high proportions of M. m. musculus ancestry have large dN/dS ratios. We also used the proportion of deleterious nonsynonymous SNVs as a proxy for deleterious mutation load, which also produced similar results. The observed results were in concordance with those expected by theory. We also show a shift in the distribution of fitness effects of nonsynonymous SNVs in the admixed genomes compared to the parental populations. These findings suggest that the deleterious mutation load of the admixed population is determined by the proportion of the ancestries of the subspecies. Therefore, it is important to consider the status and the level of genetic admixture of the populations whilst estimating the mutation loads.
In the past decades a number of software programs have been developed to deduce the phylogenetic relationship between populations. However, these programs are not suited for large-scale whole genome data. Recently, a few standalone or web applications have been developed to handle genome-wide data, but they were either computationally intensive, dependent on third party software or required significant time and resource of a web server. In the post-genomic era, researchers are able to obtain bioinformatically processed high-quality publication-ready whole genome data for many individuals in a population from next generation sequencing companies due to the reduction in the cost of sequencing and analysis. Such genotype data is typically presented in the Variant Call Format (VCF) and there is no simple software available that uses this data to construct the phylogeny of populations in a short time. To address this limitation, we have developed a one-click user-friendly software, VCF2PopTree that uses gnome-wide SNPs to construct and display phylogenetic trees in seconds to minutes. For example, it reads a 1 GB VCF file and draws a tree in less than 5 minutes. VCF2PopTree accepts genotype data from a local machine, constructs a tree using UPGMA and Neighbour-Joining algorithms and displays it on a web-browser. It also produces pairwise-diversity matrix in MEGA and PHYLIP file formats as well as trees in the Newick format which could be directly used by other popular phylogenetic software programs. The software including the source code, a test VCF input file and short documentation are available at: http://sankarsubramanian.net/dat/index.html.
In the past decades a number of software programs have been developed to deduce the phylogenetic relationship between populations. However, these programs are not suited for large-scale whole genome data. Recently, a few standalone or web applications have been developed to handle genome-wide data, but they were either computationally intensive, dependent on third party software or required significant time and resource of a web server. In the post-genomic era, researchers are able to obtain bioinformatically processed high-quality publication-ready whole genome data for many individuals in a population from next generation sequencing companies due to the reduction in the cost of sequencing and analysis. Such genotype data is typically presented in the Variant Call Format (VCF) and there is no simple software available that uses this data to construct the phylogeny of populations in a short time. To address this limitation, we have developed a one-click user-friendly software, VCF2PopTree that uses gnome-wide SNPs to construct and display phylogenetic trees in seconds to minutes. For example, it reads a 1 GB VCF file and draws a tree in less than 5 minutes. VCF2PopTree accepts genotype data from a local machine, constructs a tree using UPGMA and Neighbour-Joining algorithms and displays it on a web-browser. It also produces pairwise-diversity matrix in MEGA and PHYLIP file formats as well as trees in the Newick format which could be directly used by other popular phylogenetic software programs. The software including the source code, a test VCF input file and short documentation are available at: https://github.com/sansubs/vcf2pop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.