Macrophages exposed to macrophage colony-stimulating factor acquire the capacity to suppress T cell proliferation; this effect is associated with de novo expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO). We have purified IDO and tested its activity in in vitro models of T cell activation. IDO was able to inhibit proliferation of CD4+ T lymphocytes, CD8+ T lymphocytes, and natural killer (NK) cells; proliferation of B lymphocytes was not affected. The inhibitory role of tryptophan and of its catabolites was then tested. In the presence of tryptophan, only l-kynurenine and picolinic acid inhibit cell proliferation. In a tryptophan-free medium cell proliferation was not affected. In the absence of tryptophan inhibition induced by l-kynurenine and picolinic acid was observed at concentrations below the lowest concentration that was effective in the presence of tryptophan, and quinolinic acid acquired some inhibitory capacity. Inhibition of cell proliferation induced by the tryptophan catabolites resulting from IDO activity was selective, applying only to cells undergoing activation. Resting cells were not affected and could subsequently activate normally. We suggest that IDO exerts its effect on cell proliferation by (i) starting the cascade of biochemical reactions that produce the three catabolites and by (ii) enhancing their inhibitory potential by depriving the extracellular microenvironment of tryptophan.
N-terminally truncated amyloid-b (Ab) peptides are present in early and diffuse plaques of individuals with Alzheimer's disease (AD), are overproduced in early onset familial AD and their amount seems to be directly correlated to the severity and the progression of the disease in AD and Down's syndrome (DS). The pyroglutamate-containing isoforms at position 3 [AbN3(pE))40/42] represent the prominent form among the N-truncated species, and may account for more than 50% of Ab accumulated in plaques. In this study, we compared the toxic properties, fibrillogenic capabilities, and in vitro degradation profile of Ab1-40, Ab1-42, AbN3(pE))40 and AbN3(pE))42. Our data show that fibre morphology of Ab peptides is greatly influenced by the C-terminus while toxicity, interaction with cell membranes and degradation are influenced by the N-terminus. AbN3(pE))40 induced significantly more cell loss than the other species both in neuronal and glial cell cultures. Aggregated AbN3(pE) peptides were heavily distributed on plasma membrane and within the cytoplasm of treated cells. AbN3(pE))40/42 peptides showed a significant resistance to degradation by cultured astrocytes, while fulllength peptides resulted partially degraded. These findings suggest that formation of N-terminally modified peptides may enhance b-amyloid aggregation and toxicity, likely worsening the onset and progression of the disease.
FX is a homodimeric NADP(H)-binding protein of 68 kDa, first identified in human erythrocytes, from which it was purified to homogeneity. Its function has been unrecognized despite partial structural and genetic characterization. Recently, on the basis of partial amino acid sequence, it proved to be the human homolog of the murine protein P35B, a tumor rejection antigen. In order to address the biochemical role of FX, its primary structure was completed by cDNA sequencing. This sequence revealed a significant homology with many proteins from different organisms. Specifically, FX showed a remarkable similarity with a putative Escherichia coli protein, named Yefb, whose gene maps in a region of E. coli chromosome coding for enzymes involved in synthesis and utilization of GDP-D-mannose. Accordingly, a possible role of FX in this metabolism was investigated. The data obtained indicate FX as the enzyme responsible for the last step of the major metabolic pathway resulting in GDP-L-fucose synthesis from GDP-D-mannose in procaryotic and eucaryotic cells. Specifically, purified FX apparently catalyzes a combined epimerase and NADPH-dependent reductase reaction, converting GDP-4-keto-6-D-deoxymannose to GDP-L-fucose. This is the substrate of several fucosyltranferases involved in the correct expression of many glyconjugates, including blood groups and developmental antigens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.