This paper shows how the study of colored compositions of integers reveals some unexpected and original connection with the Invert operator. The Invert operator becomes an important tool to solve the problem of directly counting the number of colored compositions for any coloration. The interesting consequences arising from this relationship also give an immediate and simple criterion to determine whether a sequence of integers counts the number of some colored compositions. Applications to Catalan and Fibonacci numbers naturally emerge, allowing to clearly answer to some open questions. Moreover, the definition of colored compositions with the "black tie" provides straightforward combinatorial proofs to a new identity involving multinomial coefficients and to a new closed formula for the Invert operator. Finally, colored compositions with the "black tie" give rise to a new combinatorial interpretation for the convolution operator, and to a new and easy method to count the number of parts of colored compositions.
In this paper the properties of Rédei rational functions are used to derive rational approximations for square roots and both Newton and Padé approximations are given as particular cases. Moreover, Rédei rational functions are introduced as convergents of particular periodic continued fractions and are applied for approximating square roots in the field of p-adic numbers and to study periodic representations. Using the results over the real numbers, we show how to construct periodic continued fractions and approximations of square roots which are simultaneously valid in the real and in the p-adic field.
We study linear divisibility sequences of order 4, providing a characterization by means of their characteristic polynomials and finding their factorization as a product of linear divisibility sequences of order 2. Moreover, we show a new interesting connection between linear divisibility sequences and Salem numbers. Specifically, we generate linear divisibility sequences of order 4 by means of Salem numbers modulo 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.