Chemical and structural modifications occurring in homogeneous crystalline Si nanoparticles (NPs) used as anode material in Li cells are investigated. State‐of‐the‐art high‐resolution scanning transmission electron microscopy coupled with electron energy loss spectroscopy resolved at the nanoscale is exploited. It is directly highlighted by electron spectromicroscopy that, above 0.1 V versus Li, the electrochemical activity of Si electrodes involves a complex interplay between Li incorporation, electrolyte degradation, and Si reduction/oxidation. These redox processes occur upon cycling through partially reversible reactions mediated by the solid electrolyte interphase. Overall, a SiO2 amorphous layer forms in the oxidized electrodes at the Si NPs interface with the electrolyte: this oxide shell partially dissolves upon reduction to give Li2CO3 and amorphous Si. Si NPs cores are therefore eroded upon cycling as their outer layers are directly involved in a reversible oxygen shifting mechanism at the interface, whereas unreacted SiO2 accumulates cycle‐by‐cycle. These findings extend the comprehension of the Si pulverization mechanism in Li batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.