During the last few years, sports analytics has been growing rapidly. The main usage of this discipline is the prediction of soccer match results, even if it can be applied with interesting results in different areas, such as analysis based on the player position information. In this paper, we propose an approach aimed to recognize the player position in a soccer match, predicting the specific zone in which the player is located in a specific moment. Similar objectives have never been considered yet with our best knowledge. We consider supervised machine learning techniques by considering a dataset obtained through video capturing and tracking system. The data analyzed refer to several professional soccer games captured at the Alfheim Stadium in Tromso, Norway. The approach can be used in real-time, in order to verify if a player is playing according to the guidelines of the coach. In the experimental analysis, three different types of classification have been performed, i.e., three different divisions of the field, reaching the best results with Random Tree Algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.