A dynamic radial basis function (DRBF) metamodel is derived and validated, based on stochastic RBF and uncertainty quantification (UQ). A metric for assessing metamodel efficiency is developed and used. The validation includes comparisons with a dynamic implementation of Kriging (DKG) and static metamodels for both deterministic test functions (with dimensionality ranging from two to six) and industrial UQ problems with analytical and numerical benchmarks, respectively. DRBF extends standard RBF using stochastic kernel functions defined by an uncertain tuning parameter whose distribution is arbitrary and whose effects on the prediction are determined using UQ methods. Auto-tuning based on curvature, adaptive sampling based on prediction uncertainty, parallel infill, and multiple response criteria are used. Industrial problems are two UQ applications in ship hydrodynamics using highfidelity computational fluid dynamics for the high-speed Delft catamaran with stochastic operating and environmental conditions: (1) calm water resistance, sinkage and trim with variable Froude number; and (2) mean value and root mean square of resistance and heave and pitch motions with variable regular head wave. The number of high-fidelity evaluations required to achieve prescribed error levels is
a b s t r a c tDeterministic optimization algorithms are very attractive when the objective function is computationally expensive and therefore the statistical analysis of the optimization outcomes becomes too expensive. Among deterministic methods, deterministic particle swarm optimization (DPSO) has several attractive characteristics such as the simplicity of the heuristics, the ease of implementation, and its often fairly remarkable effectiveness. The performances of DPSO depend on four main setting parameters: the number of swarm particles, their initialization, the set of coefficients defining the swarm behavior, and (for box-constrained optimization) the method to handle the box constraints. Here, a parametric study of DPSO is presented, with application to simulation-based design in ship hydrodynamics. The objective is the identification of the most promising setup for both synchronous and asynchronous implementations of DPSO. The analysis is performed under the assumption of limited computational resources and large computational burden of the objective function evaluation. The analysis is conducted using 100 analytical test functions (with dimensionality from two to fifty) and three performance criteria, varying the swarm size, initialization, coefficients, and the method for the box constraints, resulting in more than 40,000 optimizations. The most promising setup is applied to the hull-form optimization of a high speed catamaran, for resistance reduction in calm water and at fixed speed, using a potential-flow solver.
a b s t r a c tSimulation-based design optimization methods integrate computer simulations, design modification tools, and optimization algorithms. In hydrodynamic applications, often objective functions are computationally expensive and noisy, their derivatives are not directly provided, and the existence of local minima cannot be excluded a priori, which motivates the use of deterministic derivative-free global optimization algorithms. The enhancement of two algorithms of this type, DIRECT (DIviding RECTangles) and DPSO (Deterministic Particle Swarm Optimization), is presented based on global/local hybridization with derivative-free line search methods. The hull-form optimization of the DTMB 5415 model is solved for the reduction of the calm-water resistance at Fr = 0.25, using potential flow and RANS solvers. Six and eleven design variables are used respectively, modifying both the hull and the sonar dome. Hybrid algorithms show a faster convergence towards the global minimum than the original global methods and are a viable option for ship hydrodynamic optimization. A significant resistance reduction is achieved both by potential flow and RANS-based optimizations, showing the effectiveness of the optimization procedure.
The application of global/local hybrid DIRECT algorithms to the sim- ulation-based hull form optimization of a military vessel is presented, aimed at the reduction of the resistance in calm water. The specific features of the black-box-type objective function make the problem suitable for the application of DIRECT-type algorithms. The objective function is given by numerical iterative procedures, which could lead to inaccurate derivative calculations. In addition, the presence of local minima cannot be excluded a priori. The algorithms proposed (namely DIRMIN and DIRMIN-2) are hybridizations of the classic DIRECT algorithm, with deterministic derivative-free local searches. The algorithms’ performances are first assessed on a set of test problems, and then applied to the ship optimization application. The numerical results show that the local hybridization of the DIRECT algorithm has beneficial effects on the overall computational cost and on the efficiency of the simulation-based optimization procedure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.