Reed-Solomon codes and Gabidulin codes have maximum Hamming distance and maximum rank distance, respectively. A general construction using skew polynomials, called skew Reed-Solomon codes, has already been introduced in the literature. In this work, we introduce a linearized version of such codes, called linearized Reed-Solomon codes. We prove that they have maximum sum-rank distance. Such distance is of interest in multishot network coding or in singleshot multi-network coding. To prove our result, we introduce new metrics defined by skew polynomials, which we call skew metrics, we prove that skew Reed-Solomon codes have maximum skew distance, and then we translate this scenario to linearized Reed-Solomon codes and the sum-rank metric. The theories of Reed-Solomon codes and Gabidulin codes are particular cases of our theory, and the sum-rank metric extends both the Hamming and rank metrics. We develop our theory over any division ring (commutative or non-commutative field). We also consider non-zero derivations, which give new maximum rank distance codes over infinite fields not considered before.1 Interestingly, the term "sum" carries the Hamming part of the metric, and the term "rank" carries the rank part. We do not know if this popular terminology was intentional in this sense.2 One can define the right notion of erasures characterizing the sum-rank metric, and then use the bound by degrees on the sum-dimensions of zero sets of linear operator polynomials [15, Theorem 2.1].
Rank weights and generalized rank weights have been proven to characterize error and erasure correction, and information leakage in linear network coding, in the same way as Hamming weights and generalized Hamming weights describe classical error and erasure correction, and information leakage in wire-tap channels of type II and code-based secret sharing. Although many similarities between both cases have been established and proven in the literature, many other known results in the Hamming case, such as bounds or characterizations of weight-preserving maps, have not been translated to the rank case yet, or in some cases have been proven after developing a different machinery. The aim of this paper is to further relate both weights and generalized weights, show that the results and proofs in both cases are usually essentially the same, and see the significance of these similarities in network coding. Some of the new results in the rank case also have new consequences in the Hamming case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.