Rapid growth in electrical load demand with lack in generation of electrical power and transmission line congestion has set the trend for smart electrical system. In smart electrical system, need arises to deploy more non-conventional energy sources, which include Renewable Energy Sources (RES) as well as non-RES. Though, the RES are getting more encouragement due to several advantages over non-RES. In recent past, there is significant increase in the penetration of small units of local generation in existing distribution system. These small units (RES and non-RES), usually known as Distributed Generation (DG), may offer several technical, economic and environmental benefits like reduction in power loss, improvement in power quality, reliability, system security, reduction in capital cost investment at large level, reduction in emission of greenhouse gases and many more. However, these advantages are difficult to achieve due to some technical and non-technical barriers. To extract maximum potential benefits from the DG, the optimal planning of such sources in distribution network has always been a topic of great interest. Though, fresh researchers face many problems in carrying out research in this area due to lack of knowledge about suitable research software, standard test networks, types of renewable/non-renewable sources, appropriate literature, etc. This paper uses a systematic approach to discuss the DG and its technologies with advantages, disadvantages and effects on end users as well as on the utility. A comparative study of all optimization techniques for planning of DG in existing power system considering optimal size and location is also included. This paper also involves the details about some standard test systems along with details of useful software's (licensed & open source) for DG planning. The present study can add worthful information and serve as a base for the fellow working in this area.
Until the middle of 20th century, there was a strong conviction that the next century would be the age of renewable and nuclear energy resources. However, at present, the whole world is dependent on fossil fuels to satisfy their energy need. Environmental pollution and global warming are the main issues associated with the use of fossil fuels for electricity generation. As per the report of US Energy Information IE Outlook 2016, coal, natural gas, and petroleum share nearly 67.2% of global electricity generation whereas renewable energy shares only 21.9%. This share is only one-fifth of the global electricity demand. According to the IEA 2016 Medium Term Renewable Energy Market Report, worldwide power production capacity of marine was only 539 MW in 2014, and to reach at a level of 640 MW, it will take 2021. The oceans cover about 70% of the Earth and acts as the largest thermal energy collector. A recent study reveals that global development capability of ocean energy is approximated to be 337 GW, and more than 885 TWH of electricity can be produced from this potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.