Automatic License Plate Recognition is related to the Intelligent Transportation System (ITS) that supports the road's e-law enforcement system. In the case of the Indonesian license plate, with various colour rules for font and background, and sometimes vehicle owners modify their license plate font format, this is a challenge in the image processing approach. This research utilizes pre-trained of AlexNet, VGGNet, and ResNet to determine the optimum model of Indonesian character license plate recognition. Three pre-trained approaches in CNN-based detection for reducing time for a build if model from scratch. The experiment shows that using the pre-trained ResNet model gives a better result than another two approaches. The optimum results were obtained at epoch 50 with an accuracy of 99.9% and computation time of 26 minutes. This experiment results fulfil the goal of this research.
Keywords : ALPR; ITS; CNN; AlexNet; VGGNet; ResNet
Many Intelligent Transport System technology have been applied in real world problems such as traffic monitoring, parking management, toll collection, law enforcement. ALPR system is one of the ITS technologies that is widely applied, however this ALPR system can not produce faultless recognition yet, especially for Indonesia license plate. In this research, image enhancement and Convolution Neural Network are proposed to the character recognition. The dataset used in this research are Indonesia license plate. The first step is train dataset to recognize character and evaluate the model with recall, precision, and f-1 score from test dataset. The model achieves accuracy and loss just over 0.99 and just below 0.01 on validation dataset respectively.Key Words : ALPR; ITS; Recall; Precision; F-1 Score; Accuracy; Loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.