Abstract--Attendance is the documentation of presence and activity in institution. A software has been made to monitor the attendance using face recognition. The software uses camera to capture the image and works on any background color. The aim of this paper is to calculate its performance with sensitivity, specificity, and accuracy using Eigenface Algorithm and Principal Component Analysis (PCA) method. Face recognition in this paper is based on Eigenface algorithm, using pixel information from images captured by webcam. The image is represented using PCA method. The software is tested using different expressions and accessories in object's face. The performance of the software indicates 73.33% sensitivity, 52.17% specificity, and 86.67% accuracy. The successful rate in identifying the face for distance testing is 70%, while successful rate of 85% is achieved for object wearing eyeglasses and veil (jilbab). Furthermore, the successful rate for various expression is 85.33%.Intisari--Presensi adalah pendataan kehadiran atau aktivitas pada suatu institusi. Aplikasi komputer yang dikembangkan pada sistem presensi digunakan untuk mengenali wajah seseorang dengan kamera tanpa menentukan warna latar belakang pada citra. Makalah ini bertujuan untuk mengetahui nilai sensivisitas, kekhususan, dan akurasi dari sebuah citra pada sistem presensi menggunakan algoritme eigenface dan metode Principal Component Analysis (PCA). Sistem pengenalan wajah pada makalah ini berbasis algoritme eigenface, berdasarkan citra yang dihasilkan melalui webcam dan informasi dari piksel citra. Kemudian, citra direpresentasikan menggunakan metode PCA. Citra dideteksi dengan mengekstraksi mimik wajah dan penggunaan aksesoris pada area wajah. Sistem presensi yang diimplementasikan dengan deteksi wajah berhasil dilakukan dengan pengujian berbagai ekspresi, aksesoris, jarak, dan pada latar belakang yang kompleks. Tingkat keberhasilan sistem ditunjukkan dengan nilai sensivisitas 73,33%, kekhususan 52,17%, dan akurasi 86,67%. Tingkat keberhasilan proses identifikasi pada pengujian jarak adalah sebesar 70%, sedangkan ketika menggunakan aksesoris kacamata dan kerudung sebesar 85%, dan proses identifikasi dengan berbagai ekspresi sebesar 85,33%.Kata Kunci -Sistem presensi, Deteksi wajah, Eigenface, Principal Component Analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.