In a series of seven experiments (total N = 220), it is shown that explicit angular declination judgments are influenced by the presence of a ground plane in the background. This is of theoretical importance because it bears on the interpretation of the relationship between angular declination and perceived distance on a ground plane. Explicit estimates of ground distance are consistent with a simple 1.5 gain in the underlying perceived angular declination function. The experiments show that, in general, functions of estimates of perceived angular declination have a slope of 1.5, but that an additional intercept can often be observed as a result of incorporating changes in ground distance into reports of changes in angular declination. By varying the background context, a variety of functions were observed that are consistent with this contamination hypothesis.
It has been proposed that perceived angular direction relative to straight-ahead is exaggerated in perception, and that this exaggeration is greater in elevation (or declination) than in azimuth. Prior research has suggested that exaggerations in elevation may be tied to the presence of a visual ground plane, but there have been mixed results across studies using different methods of dissociation. In the present study, virtual environments were used to dissociate visual from gravitational upright while human participants (N = 128) made explicit angular direction judgments relative to straight ahead. Across these experimental manipulations, observers were positioned either upright (Experiments 1A and 1B) or sideways (Experiment 2), so as to additionally dissociate bodily orientation from gravitational orientation. In conditions in which a virtual environment was perceived as containing a level ground plane, large-scale exaggerations consistent with the visually-specified orientation of the ground plane were observed. In the absence of the perception of a level ground plane, angular exaggerations were relatively small. The ground plane serves as an important reference frame for angular expansion in the perceived visual direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.