Innovative building approaches, which take advantage of heat energy in buildings, have recently appeared as part of a global effort to save energy. Incorporating phase change material (PCM) into the building envelope helps in reducing energy consumption and regulating energy demand by managing the thermal inertia of designed PCM thermal characteristics. A study was conducted to assess the performance benefits provided by the latent heat of the concrete wall combined with PCM. This study focuses on developing and testing heat barrier performance by incorporating PCM into wall external finishing, i.e. cement plaster and gloss paint. The effect of PCM inclusion in building wall were investigated by experimental work. The results indicate that incorporating PCM into the building wall reduced the surface temperature by up to 9 °C. Furthermore, the application of the PCM in the plaster layer is more reliable in reducing the internal wall surface temperature by a value of 8.1 °C when compared to the PCM in a painted coating. Painted wall panels experienced more significant temperature reduction differences than other wall panels, i.e. 9.2 °C and 9.5 °C, respectively. However, painted wall panels experienced higher internal surface temperatures than external surface temperatures compared to plastered wall panel at night. This could be due to the paint reactions, which are ineffective at releasing internal heat from the building at night. The yearly energy demand is decreased by 64.3% by incorporating PCM to the building wall, with a total annual electricity bill savings of 42.3% (8695.8 kWh yr−1). Therefore, it was concluded that wrapped PCM integrated into plaster layers on external surface building walls could decrease the indoor building temperature and thus contribute to conserving the energy required for an air conditioning system.
Population growth and industrial demand are related in construction of buildings and houses which contribute to increment of energy consumption. The invention of phase change materials (PCMs) with high latent heat capacity were explored to be integrated into building materials. PCMs are substances that are capable of storing large amounts of thermal energy as latent heat during their phase transition. Development of this product can ensure a comfortable indoor temperature in buildings without depending on air conditioning system which consumes more energy and damage the environment not to mention contributing towards global climate change. This research concentrated on proposing the method of PCM incorporation and its heat resistance performance. Calcium Chloride Hexahydrate (CaCl<sub>2</sub>.6H<sub>2</sub>O) was used in this research while the incorporation method is direct mixing into gloss paint and added into zip-lock plastic then covered by conventional cement plaster. From the data obtained, we can see the PCM incorporated wall is better in heat resistance than wall without PCM resulting difference in temperature between internal and external wall 3 ˚C rather than 1 ˚C. For the conclusion , PCM incorporated wall can decrease the internal temperature of building slightly contributing to conserving nature by reducing air conditioner system consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.