Marine and freshwater microalgae grow in two different ecosystems, which influence their properties thus requires attention prior to determining its application. This paper has successfully disclosed the thermal, chemical, and physical properties of two types of microalgae on carbon dioxide (CO2) fixation and underwent pyrolysis process. Slow pyrolysis process for marine and freshwater microalgae (Isochrysis sp. and Monoraphidium c.) was performed in the fixed bed pyrolysis reactor and TGA (thermogravimetric analyzer) to determine the product yield and study their thermal decomposition profile. The pyrolysis was completed at various temperatures (400, 450, 500, and 550°C) at a heating rate of 15 °Cmin-1 and nitrogen flow rate of 200 ml min-1. Pyrolysis in TGA analyzer ran from 27 to 800°C at three heating rates (10, 20, and 40 °Cmin-1). For chemical composition, Fourier-transform Infrared (FTIR) analysis was performed on both microalgae samples. The highest yield (up to 33.9%) of bio-oil was obtained from Isochrysis sp. for all temperatures while the highest average yield (65.78%) of bio-char was collected from Monoraphidium c. species. From TGA pyrolysis, the major decomposition occurred between 200-400°C for Monoraphidium c. species. On the other hand, the decomposition profile of Isochrysis sp. was slightly slower, which may be due to the differences in lipid composition (FTIR peak 2929 cm-1). The activation energy of all tests is lower (33.6-40.3 kJ mol-1) compared to several other biomasses. Marine species fixed with CO2 showed promising results even without addition of catalyst and no additional cost needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.