The objective of the present study is to improve the genetic algorithm (GA) supremacy in selecting the most suitable and relevant features within a highly dimensional dataset. This results in cost reduction and improving classification performance. During text classification, employing terms such as features using vector space representation can result in a high dimensionality of future space. This condition presents some issues, including high computation cost in data analysis and deteriorating classification accuracy performance. Several computational feature selection techniques can be applied in eliminating the least significant features within a dataset, including a genetic algorithm. The present study improved the performance of the classifier in classifying Pima Indian diabetes data. Despite the popularity of GA in the feature selection area, it does not provide the most optimal features due to one of its underlying issues: premature convergence due to insufficient population diversity in the future generations. GA was improved in its crossover operator using two steps: define a variable slice point on the size of the gene to be interchanged for every offspring generation and apply feature frequency scores in deciding the interchanging of genes. The above obtained results to the proposed technique will be better results than the results for standard GA. Our proposed algorithm attained an accuracy of 97.5%, precision of 98, recall of 97% and F1-score of 97%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.