This paper aims to bring a voltage differencing inverting buffered amplifier (VDIBA)-based current-mode (CM) proportional integral derivative (PID) controller circuit. This CM PID controller is designed with a single VDIBA, three resistors, and two grounded capacitors. The proposed circuit is easy to design, and the control parameters can be tuned without changing the design configuration. A sensitivity analysis of the control parameters to electronic components has been conducted. The Simulation Program with Integrated Circuit Emphasis (SPICE) simulation has been performed using Taiwan Semiconductor Manufacturing Company (TSMC) [Formula: see text]m complementary metal-oxide semiconductor (CMOS) technology parameters. An application circuit example is given to demonstrate the reliability of the proposed PID design. A comparison table of the PID controllers previously reported in the literature is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.