Abstract. Due to the good mechanical properties of forged parts, the forging process plays a decisive role in the manufacturing of seamless stainless steel pipes for oil country tubular goods (OCTG) lines. Tough competition between manufacturers gives them plenty of incentive to make their processes in raw material and energy usage more and more efficient. In this context the expansion process is one of the critical production steps in the manufacturing of seamless stainless steel pipes. This work presents a sensitivity analysis of a finite element method (FEM) for the simulation of the expansion of the alloy UNS N08028. The input parameters ram speed, tool angle, initial ID and final ID of the billet as well as temperature were used to describe responses like tool wear and material loss. With the aim to minimize the tool wear and to reduce the material waste, a study of influence of the input parameters on the mentioned responses were performed. This development is supported by experimental work in order to validate the simulation model. The sector demand for new materials with specific properties and the cost-intensive experimental trials justifies the use of such simulation tools and opens great opportunities for the industry.
Abstract. Due to the good mechanical properties of forged parts, the forging process plays a decisive role in the manufacturing of seamless stainless steel pipes for oil country tubular goods (OCTG) lines. Tough competition between manufacturers gives them plenty of incentive to make their processes in raw material and energy usage more and more efficient. In this context the expansion process is one of the critical production steps in the manufacturing of seamless stainless steel pipes. This work presents a sensitivity analysis of a finite element method (FEM) for the simulation of the expansion of the alloy UNS N08028. The input parameters ram speed, tool angle, initial ID and final ID of the billet as well as temperature were used to describe responses like tool wear and material loss. With the aim to minimize the tool wear and to reduce the material waste, a study of influence of the input parameters on the mentioned responses were performed. This development is supported by experimental work in order to validate the simulation model. The sector demand for new materials with specific properties and the cost-intensive experimental trials justifies the use of such simulation tools and opens great opportunities for the industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.