Historic centres are highly regarded destinations for watching and even participating in diverse and unique forms of cultural expression. Cultural tourism, according to the World Tourism Organization (UNWTO), is an important and consolidated tourism sector and its strong growth is expected to continue over the coming years. Tourism, the much dreamt of redeemer for historic centres, also represents one of the main threats to heritage conservation: visitors can dynamize an economy, yet the rapid growth of tourism often has negative effects on both built heritage and the lives of local inhabitants. Knowledge of occupancy levels and flows of visiting tourists is key to the efficient management of tourism; the new technologies—the Internet of Things (IoT), big data, and geographic information systems (GIS)—when combined in interconnected networks represent a qualitative leap forward, compared to traditional methods of estimating locations and flows. A methodology is described in this paper for the management of tourism flows that is designed to promote sustainable tourism in historic centres through intelligent support mechanisms. As part of the Smart Heritage City (SHCITY) project, a collection system for visitors is developed. Following data collection via monitoring equipment, the analysis of a set of quantitative indicators yields information that can then be used to analyse visitor flows; enabling city managers to make management decisions when the tourism-carrying capacity is exceeded and gives way to overtourism.
The monitoring of small houses and rooms has become possible due to the advances in IoT sensors, actuators and low power communication protocols in the last few years. As buildings are one of the biggest energy consuming entities, monitoring them has great interest for trying to avoid non-necessary energy waste. Moreover, human behaviour has been reported as being the main discrepancy source between energy usage simulations and real usage, so the ability to monitor and predict actions as opening windows, using rooms, etc. is gaining attention to develop stronger models which may lead to reduce the overall energy consumption of buildings, considering buildings thermal inertia and additional capabilities. In this paper, a case study is described in which four meeting rooms have been monitored to obtain information about the usage of the rooms and later use it to predict their future usage. The results show the possibility to deploy a simple and non-intrusive sensing system whose output could be used to develop advanced control strategies.
This paper aims to contribute to the field of ambient intelligence from the perspective of real environments, where noise levels in datasets are significant, by showing how machine learning techniques can contribute to the knowledge creation, by promoting software sensors. The created knowledge can be actionable to develop features helping to deal with problems related to minimally labelled datasets. A case study is presented and analysed, looking to infer high-level rules, which can help to anticipate abnormal activities, and potential benefits of the integration of these technologies are discussed in this context. The contribution also aims to analyse the usage of the models for the transfer of knowledge when different sensors with different settings contribute to the noise levels. Finally, based on the authors’ experience, a framework proposal for creating valuable and aggregated knowledge is depicted.
The development of IoT devices has allowed to install large amounts of sensors in different environments. Consequently, monitoring small houses and entire buildings has become possible. In addition, buildings are one of the biggest energy consumers, so the monitoring of the energy waste, and its sources, is gaining attention. Human behaviour has been reported as being the main discrepancy source between energy usage simulations and real usage, thus being able to easily monitor such behaviour will bring greater insight in the building usage. In this paper, an IoT sensor network is proposed to model occupancy profiles at room level. Such measurement of users' behaviour along with additional information such as temperature or humidity can be used to develop strategies to save energy, especially regarding heating, ventilating and airconditioning (HVAC) systems. The proposed equipment has been gathering data for some months in a workplace containing several meeting rooms. Four of those rooms were monitored and later analysed to test the validity of the proposed approach. The results show that it is possible to obtain occupancy profiles by using simple IoT equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.