In this research, the possibilities of using canola meal (CM) in place of soybean meal (SBM), and also the effects of multi-enzyme and phytase supplementation on the performance of quails were investigated. For this purpose, soybean meal (44% CP), canola meal (37% CP), phytase (produced from Peniophora luci) and multi-enzyme (β-glucanases, pectinases, cellulases and hemicellulases) were used. CM was used supplying 0, 25 and 50% of CP from SBM and each of the phytase and multi-enzyme blends were added to the each level. This study was conducted with 675 day old quails (Coturnix coturnix Japonica) in 9 groups with 3 replicates including 25 birds (mixed sex) per replicate. Nine isocalaric and isonitrogenous diets were prepared. The effects of enzymes and CM levels were studied with a 3×3×3 factorial arrangement for three CM levels (0, 25 and 50%), three treatments (without enzyme, phytase enzyme and multi-enzyme) and three replicates. While the 25% CM level did not affect the liveweight gain 50% CM level decreased the liveweight gain (p<0.05). Multi-enzyme addition to the 50% CM group increased the liveweight gain compared to the other groups (p<0.05). CM levels and enzyme supplementation had no effect on feed consumption, feed conversion ratio, dressing percentage, viability, tibia ash content, Ca and P contents of tibia ash, viscera weight, gizzard weight and length of growth period. While heart weight and liver weight were not affected by CM levels, but they were affected by enzyme supplementation. CM levels and enzyme supplementation did not affect final liveweight, feed consumption, feed conversion ratio, egg yield, egg weight, shell weight and shell index during laying period. The increase in the CM level lightened the colour of the yolk (p<0.05).
The aim of this study was to determine the nutritive value of some legume species in salt-affected soils of South-East Anatolian region using chemical composition and in vitro gas production kinetics. In this study, Lotus corniculatus, Trifolium alexandrinum, Medicago sativa were sown and tested in four different locations. A 3 by 4 factorial design with 3 legume species and 4 salt levels (non salty electrical conductivity (EC)<4 dS/m; low salt: 4 dS/m>EC<8 dS/m, medium saline: 8 dS/m>EC<16 dS/m and high salt: 16 dS/m>EC) was used in the study. Results indicated that salinity and plants had no significant effect on ash and ether extract. Dry matter (DM), acid detergent fiber, digestible dry matter, dry matter intake (DMI) were affected by plant, salinity and plant×salinity interaction. On the other hand neutral detergent fiber, relative feed value (RFV), and DMI were affected by salinity and plant×salinity interaction. Mineral contents were affected by plant species, salinity and salinity×plants interactions. In vitro gas production, their kinetics and estimated parameters such as were not affected by salinity whereas the gas production up to 48 h, organic matter digestibility, metabolizable energy (ME), and net energy lactation (NEL) were affected by plant and plant×salt interaction. Generally RFVs of all species ranged from 120 to 210 and were quite satisfactory in salty conditions. Current results show that the feed value of Medicago sativa is higher compared to Lotus corniculatus and Trifolium alexandrinum.
The aim of this study was to determine the effect of essential oils (EO) of oregano, ORE (Origanum vulgare); black seed, BSD (Nigella sativa); laurel, LAU (Laurus nobilis); cumin, CUM (Cumminum cyminum); garlic, GAR (Allium sativum); anise, ANI (Pimpinella anisum), and cinnamon, CIN (Cinnamomum verum) on in vitro gas production (IVGP) and IVGP kinetics of barley, wheat straw and soyabean meal. IVGP values were determined by using rumen liquor from three dry Holstein cows. The findings of this study indicate that the effects of EO, doses, and EO × dose interactions were significant. IVGP was decreased by ANI, GAR and ORE, and only CUM increased IVGP. These EO and their different doses or combinations in diets could be used to improve the performance of ruminants. Moreover, EO may act at different levels in energy and protein metabolic pathways, thus their careful selection and combination may be a useful tool to effectively manipulate rumen fermentation.
This study was conducted to determine the potential nutritive value and in vitro gas production (IVGP) parameters of Olea europaea L. (Olive = OL), Morus alba L. (Mulberry = ML) and Citrus aurantium L. (Sour orange = SOL) tree leaves. Hohenheim gas test was used to determine the in vitro gas productions of the leaves. The gas production of samples over time was recorded for 3, 6, 9, 12, 24, 48, 72 and 96 h after incubation. Completely Randomized Design was used to compare gas production, and gas production kinetics of samples. The findings of the present study suggested that there were differences among the tree leaves in terms of crude protein, NDF, in vitro gas productions, organic matter digestibility (OMD), metabolisable energy (ME), net energy lactation (NEL) and relative feed values (RFV) (P<0.01). ML had the highest condensed tannin contents (P<0.05), in vitro gas production (IVGP), OMD and energy values (P<0.01). SOL had highest RFV values. OL showed the lowest IVGP when compared to SOL and ML. Low NDF and ADF contents of SOL would probably increase the voluntary intake, digestibility and relative feed values of these leaves by ruminants. In conclusion, it was determined that OL, ML and SOL used in the study have low in vitro gas production and can be utilized as alternative roughage feed in ruminants. However, it is recommended that the results obtained from this research should be tested in in vivo studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.