Individuals who interact with each other in social networks often exchange ideas and influence each other's opinions. A popular approach to studying the dynamics of opinion spread on networks is by examining bounded-confidence (BC) models, in which the nodes of a network have continuous-valued states that encode their opinions and are receptive to other opinions if they lie within some confidence bound of their own opinion. We extend the Deffuant--Weisbuch (DW) model, which is a well-known BC model, by studying opinion dynamics that coevolve with network structure. We propose an adaptive variant of the DW model in which the nodes of a network can (1) alter their opinion when they interact with a neighboring node and (2) break a connection with a neighbor based on an opinion tolerance threshold and then form a new connection to a node following the principle of homophily. This opinion tolerance threshold acts as a threshold to determine if the opinions of adjacent nodes are sufficiently different to be viewed as discordant. We find that our adaptive BC model requires a larger confidence bound than the standard DW model for the nodes of a network to achieve a consensus. Interestingly, our model includes regions with `pseudo-consensus' steady states, in which there exist two subclusters within an opinion-consensus group that deviate from each other by a small amount. We conduct extensive numerical simulations of our adaptive BC model and examine the importance of early-time dynamics and nodes with initial moderate opinions for achieving consensus. We also examine the effects of coevolution on the convergence time of the dynamics.
Individuals who interact with each other in social networks often exchange ideas and influence each other's opinions. A popular approach to studying the dynamics of opinion spread on networks is by examining bounded-confidence (BC) models, in which the nodes of a network have continuous-valued states that encode their opinions and are receptive to other opinions if they lie within some confidence bound of their own opinion. We extend the Deffuant-Weisbuch (DW) model, which is a well-known BC model, by studying opinion dynamics that coevolve with network structure. We propose an adaptive variant of the DW model in which the nodes of a network can (1) alter their opinion when they interact with a neighboring node and (2) break a connection with a neighbor based on an opinion tolerance threshold and then form a new connection to a node following the principle of homophily. This opinion tolerance threshold acts as a threshold to determine if the opinions of adjacent nodes are sufficiently different to be viewed as discordant. We find that our adaptive BC model requires a larger confidence bound than the standard DW model for the nodes of a network to achieve a consensus. Interestingly, our model includes regions with 'pseudo-consensus' steady states, in which there exist two subclusters within an opinion-consensus group that deviate from each other by a small amount. We conduct extensive numerical simulations of our adaptive BC model and examine the importance of early-time dynamics and nodes with initial moderate opinions for achieving consensus. We also examine the effects of coevolution on the convergence time of the dynamics.
Individuals who interact with each other in social networks often exchange ideas and influence each other’s opinions. A popular approach to study the spread of opinions on networks is by examining bounded-confidence models (BCMs), in which the nodes of a network have continuous-valued states that encode their opinions and are receptive to other nodes’ opinions when they lie within some confidence bound of their own opinion. In this article, we extend the Deffuant–Weisbuch (DW) model, which is a well-known BCM, by examining the spread of opinions that coevolve with network structure. We propose an adaptive variant of the DW model in which the nodes of a network can (1) alter their opinions when they interact with neighbouring nodes and (2) break connections with neighbours based on an opinion tolerance threshold and then form new connections following the principle of homophily. This opinion tolerance threshold determines whether or not the opinions of adjacent nodes are sufficiently different to be viewed as ‘discordant’. Using numerical simulations, we find that our adaptive DW model requires a larger confidence bound than a baseline DW model for the nodes of a network to achieve a consensus opinion. In one region of parameter space, we observe ‘pseudo-consensus’ steady states, in which there exist multiple subclusters of an opinion cluster with opinions that differ from each other by a small amount. In our simulations, we also examine the roles of early-time dynamics and nodes with initially moderate opinions for achieving consensus. Additionally, we explore the effects of coevolution on the convergence time of our BCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.