Paternally expressed gene 10 (PEG10) is a mammalian gene that is essential for embryonic development in mice. The gene contains two overlapping open reading frames (ORF1 and ORF2) and is derived from a retroelement that acquired a cellular function. It is not known if both reading frames are required for PEG10 function. Synthesis of ORF2 would be possible only if programmed ؊1 frameshifting occurred during ORF1 translation. In this study the frameshifting activity of PEG10 was analyzed in vivo, and a potential role for ORF2 was investigated. Phylogenetic analysis demonstrated that PEG10 is highly conserved in therian mammals, with all species retaining the elements necessary for frameshifting as well as functional motifs in each ORF. The frameshift site of PEG10 was highly active in cultured cells and produced the ORF1-2 protein. In mice, endogenous ORF1 and an ORF1-2 frameshift protein were detected in the developing placenta and amniotic membrane from 9.5 days post-coitus through to term with a very high frameshift efficiency (>60%). Mutagenesis of the active site motif of a putative protease within ORF2 showed that this enzyme is active and participates in post-translational processing of PEG10 ORF1-2. Both PEG10 proteins were also detected in first trimester human placenta. By contrast, neither protein expression nor frameshifting was detected in adult mouse tissues. These studies imply that the ORF1-2 protein, synthesized utilizing the most efficient ؊1 frameshift mechanism yet documented in vivo, will have an essential function that is intrinsic to the importance of PEG10 in mammals.
SummaryRnd proteins are atypical Rho family proteins that do not hydrolyse GTP and are instead regulated by expression levels and post-translational modifications. Rnd1 and Rnd3/RhoE induce loss of actin stress fibres and cell rounding in multiple cell types, whereas responses to Rnd2 are more variable. Here we report the responses of endothelial cells to Rnd proteins. Rnd3 induces a very transient decrease in stress fibres but subsequently stimulates a strong increase in stress fibres, in contrast to the reduction observed in other cell types. Rnd2 also increases stress fibres whereas Rnd1 induces a loss of stress fibres and weakening of cell–cell junctions. Rnd3 does not act through any of its known signalling partners and does not need to associate with membranes to increase stress fibres. Instead, it acts by increasing RhoB expression, which is then required for Rnd3-induced stress fibre assembly. Rnd2 also increases RhoB levels. These data indicate that the cytoskeletal response to Rnd3 expression is dependent on cell type and context, and identify regulation of RhoB as a new mechanism for Rnd proteins to affect the actin cytoskeleton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.