(1) Background: Boron-based diffusion layers possess great application potential in forging and die-casting due to their favorable mechanical and thermophysical properties. This research explores the enhanced wear resistance of tungsten hot-work steel through boriding and boroaluminizing. (2) Methods: Thermal-chemical treatment (TCT) of steel H21 was carried out. Pure boriding was introduced to the substrate through heating a paste of boron carbide and sodium fluoride 1050 °C for two hours. As for boroaluminizing, 16% of aluminum powder was added to the boriding paste. (3) Results: It was shown that boriding resulted in the formation of an FeB/Fe2B layer with a tooth-like structure. A completely different microstructure was revealed after boroaluminizing—namely, diffusion layer with heterogeneous structure, where hard components FeB and Mx (B,C) were displaced in the matrix of softer phases—Fe3Al and α-Fe. In addition, the layer thickness increased from 105 μm to 560 μm (compared to pure boriding). The maximum microhardness values reached 2900 HV0.1 after pure boriding, while for boroaluminizing it was about 2000 HV0.1. (4) Conclusions: It was revealed that the mass loss during wear test reduced by two times after boroaluminizing and 13 times after boriding compared to the hardened sample after five-min testing.
The article describes the research results of steel C30 boroaluminised by isothermal and thermocycle methods in powder mixtures. Thermocycling is performed in the range of 650-950uC. In this study, a comparative analysis of microstructure, composition of elements and microhardness of boroaluminised steels after various treatments is presented. A series of tensile tests and a plasticity estimation of boroaluminised layer were carried out.
(1) Background: Operational properties and durability of dies in different metal-forming processes significantly depend on their surface quality. Major die failures are related to surface damage due to heat checking cracks, wear, etc. Thereby, strengthening of the working surfaces of dies for hot bending, stamping, forging, and die casting processes is an urgent engineering challenge. Surface alloying with high-energy beams improves the properties of steel products. In these processes, the alloying powders and the treated surfaces can be remelted by electron beam within a short time while the bulk structure of the component remains unchanged, resulting in minimal distortion. The paper presents the results of the electron beam surface alloying (EBSA) of H21 and L6 tool steels with the treatment pastes containing boron carbide and aluminum powders. (2) Methods: Two types of pastes were used for surface alloying: a single-component (B4C) paste and a two-component (B4C+Al) one. The microstructure, microhardness, wear resistance, and elemental and phase composition of the layers obtained on steels were investigated. (3) Results: Four layers up to 0.4 mm thick were distinguished on the surface of the steels after the EBSA. Metallographic analysis showed coarse dendrite formation in the layers embedded in matrices of a eutectic or a solid solution. Microhardness of the steels after the two-component EBSA was higher than after B4C EBSA, which was related to a higher concentration of hard phases, such as iron borides and carbides. In addition, aluminum boride was revealed by the XRD analysis on L6 steel after B4C+Al EBSA. (4) Conclusions: Wear test indicated that the most resistant samples were H21 steel after single B4C EBSA and L6 steel after B4C+Al EBSA. Both samples contained carbon particles in the layer contributing to the high wear resistance as a lubricant. The conducted research is beneficial for mechanical engineering, automotive engineering, medical technology, aerospace engineering, and related industries, where coatings with high microhardness, wear resistance, and surface quality are demanded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.