The epidermal growth factor receptor (EGFR) family, consisting of four tyrosine kinase receptors, c-erbB1-4, seems to be influential in gliomagenesis. The aim of this study was to investigate EGFR gene amplification and expression of c-erbB1-4 receptor proteins in human anaplastic astrocytomas. Formalin-fixed and paraffin-embedded sections from 31 cases were investigated by standard immunohistochemical procedures for expression of c-erbB1-4 receptor proteins using commercial antibodies. EGFR gene amplification was studied by fluorescence in situ hybridization using paraffin-embedded tissues. Two monoclonal antibodies, NCL-EGFR-384 and NCL-EGFR, were used for EGFR detection and they displayed positive immunoreactivity in 97% and 71%, respectively. For c-erbB2 detection three monoclonal antibodies, CB11, 3B5, and 5A2, were applied and they displayed positive immunoreactivity in 45%, 100%, and 52%, respectively. Positive immunostaining for c-erbB3 and c-erbB4 was encountered in 97% and 74%, respectively. The EGFR gene was amplified in 9 out of 31 tumors (29%). After adjusting for age, Karnofsky performance status, and extent of surgical resection, Cox multiple regression analysis with overall survival as the dependent variable revealed that c-erbB2 overexpression detected by the monoclonal antibody clone CB11 was a statistically significant poor prognostic factor (P = 0.004). This study shows the convenience and feasibility of immunohistochemistry when determining the expression of receptor proteins in tissue sections of human astrocytomas. The synchronous overexpression of c-erbB1-4 proteins in anaplastic astrocytomas supports their role in the pathogenesis of these tumors. Further, c-erbB2 overexpression seems to predict aggressive behaviour.
BackgroundMeningiomas are common intracranial tumors in humans that frequently recur despite having a predominantly benign nature. Even though these tumors have been shown to commonly express EGFR/c-erbB1 (epidermal growth factor receptor), results from previous studies are uncertain regarding the expression of either intracellular or extracellular domains, cellular localization, activation state, relations to malignancy grade, and prognosis.AimsThis study was designed to investigate the expression of the intracellular and extracellular domains of EGFR and of the activated receptor as well as its ligands EGF and TGFα in a large series of meningiomas with long follow-up data, and investigate if there exists an association between antibody expression and clinical and histological data.MethodsA series of 186 meningiomas consecutively operated within a 10-year period was included. Tissue microarrays were constructed and immunohistochemically analyzed with antibodies targeting intracellular and extracellular domains of EGFR, phosphorylated receptor, and EGF and TGFα. Expression levels were recorded as a staining index (SI).ResultsPositive immunoreactivity was observed for all antibodies in most cases. There was in general high SIs for the intracellular domain of EGFR, phosphorylated EGFR, EGF, and TGFα but lower for the extracellular domain. Normal meninges were negative for all antibodies. Higher SIs for the phosphorylated EGFR were observed in grade II tumors compared with grade I (p = 0.018). Survival or recurrence was significantly decreased in the time to recurrence analysis (TTR) with high SI-scores of the extracellular domain in a univariable survival analysis (HR 1.152, CI (1.036–1.280, p = 0.009)). This was not significant in a multivariable analysis. Expression of the other antigens did not affect survival.ConclusionEGFR is overexpressed and in an activated state in human meningiomas. High levels of ligands also support this growth factor receptor system to be involved in meningioma tumorigenesis. EGFR may be a potential candidate for targeted therapy.
BackgroundThe preoperative growth of human glioblastomas (GBMs) has been shown to vary among patients. In animal studies, angiogenesis has been linked to hypoxia and faster growth of GBM, however, its relation to the growth of human GBMs is sparsely studied. We have therefore aimed to look for associations between radiological speed of growth and microvessel density (MVD) counts of the endothelial markers vWF (Factor VIII related antigen) and CD105 (endoglin).MethodsPreoperative growth was estimated from segmented tumor volumes of two preoperative T1-weighted postcontrast magnetic resonance imaging scans taken ≥14 days apart in patients with newly diagnosed GBMs. A Gompertzian growth curve was computed from the volume data and separated the patients into two groups of either faster or slower tumor growth than expected. MVD counts of the immunohistochemical markers von Willebrand factor (vWF) (a pan-endothelial marker) and CD105 (a marker of proliferating endothelial cells) were assessed for associations with fast-growing tumors using Mann-Whitney U tests and a multivariable binary logistic regression analysis.ResultsWe found that only CD105-MVD was significantly associated with faster growth in a univariable analysis (p = 0.049). However, CD105-MVD was no longer significant when corrected for the presence of thromboses and high cellular density in a multivariable model, where the latter features were significant independent predictors of faster growth with respective odds ratios 4.2 (95% confidence interval, 1.2, 14.3), p = 0.021 and 2.6 (95% confidence interval, 1.0, 6.5), p = 0.048.ConclusionsMVDs of neither endothelial marker were independently associated with faster growth, suggesting angiogenesis-independent processes contribute to faster glioblastoma growth.Electronic supplementary materialThe online version of this article (10.1186/s12885-018-4768-9) contains supplementary material, which is available to authorized users.
Determination of proliferative activity in tumours may be valuable in diagnosis and prognosis. In this study, commonly used proliferation markers were investigated and compared in 12 cases of human glioblastoma. Paraffin sections were incubated with four commercial Ki67-equivalent antibodies, anti-PCNA, and anti-bcl-2. S-phase fraction and mitotic activity were determined as well. The different Ki67 antibodies gave satisfactory immunostainings, though they provided a wide range of proliferation indices (PI) intra- and intertumorally. Correlations between the Ki67 antibodies and the other proliferation markers were, broadly speaking, poor. PCNA immunostaining was hampered by disturbing background staining. Few bcl-2-immunoreactive cells were observed, mainly gemistocytes. Flow cytometric analyses provided reliable S-phase fraction values, and two aneuploid tumours were detected. The mitotic activity was generally high. Thus, mitotic counting remains a convenient method for assessing proliferative activity in astrocytic tumours. Ki67 antibodies are important alternatives, for instance in stereotactic brain biopsies. Under all circumstances, proliferation markers should be used in combination with established histopathological criteria for malignancy in these tumours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.