Abstract. The slow displacement of a wetting fluid by a nonwetting fluid in models of a single fracture was studied experimentally and by computer simulations on identical geometries. The fracture was modeled by the gap between a rough plate and a smooth transparent plate, both oriented horizontally. Two different rough plates were used, a textured glass plate and a polymethyl methacrylate plate with a computer-generated pattern. A nonwetting fluid (air) was injected slowly through an inlet into the model and displaced a wetting fluid (water) initially filling the model. The aperture fields of the artifical fractures were measured using a light absorption technique. The experiments were simulated using modified invasion percolation models, making use of the measured aperture fields. The simulation models captured invasion bursts and fragmentation and redistribution of the invading air. Experiments and simulations were compared step by step, and good qualitative and quantitative agreement was found.
Tropospheric ozone is a major air pollutant affecting plants worldwide. Plants in northern regions can display more ozone injury than plants at lower latitudes despite lower ozone levels. Larger ozone influx and shorter nights have been suggested as possible causes. However, the effects of the dim light present during northern summer nights have not been investigated. Young Trifolium subterraneum plants kept in environmentally controlled growth rooms under long day (10 h bright light, 14 h dim light) or short day (10 h bright light, 14 h darkness) conditions were exposed to 6 h of 70 ppb ozone during daytime for three consecutive days. Leaves were visually inspected and imaged in vivo using thermal imaging before and after the daily exposure. In long-day-treated plants, visible foliar injury within 1 week after exposure was more severe. Multivariate statistical analyses showed that the leaves of ozone-exposed long-day-treated plants were also warmer with more homogeneous temperature distributions than exposed short day and control plants, suggesting reduced transpiration. Temperature disruptions were not restricted to areas displaying visible damage and occurred even in leaves with only slight visible injury. Ozone did not affect the leaf temperature of short-day-treated plants. As all factors influencing ozone influx were the same for long- and short-day-treated plants, only the dim nocturnal light could account for the different ozone sensitivities. Thus, the twilight summer nights at high latitudes may have a negative effect on repair and defence processes activated after ozone exposure, thereby enhancing sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.